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Abstract—During the last few decades complex programmable
circuits have seen a widespread usage in various digital circuit
applications. One prominent example are Field Programmable
Gate Arrays (FPGAs). Teaching FPGA technology has become
an integral part of introductory digital logic courses. However,
implementing Boolean functions in this technology requires
understanding of several steps that are not trivial, including
Boolean function decomposition, mapping the design into phys-
ical programmable units and routing. We have developed a
portable Java-based tool which allows students to experiment
with the required steps for arbitrary Boolean functions and to
simulate the obtained implementation. In this paper, we give an
overview of the developed tool and discuss its usage in class.

I. INTRODUCTION

At the University of Zagreb, Faculty of Electrical Engineer-
ing and Computing, Digital Logic is a first-year course. On this
course students are taught various concepts including basics
of Boolean algebra, combinatorial circuits, sequential circuits,
D/A and A/D conversions, implementations of memory mod-
ules as well as transistor implementations of basic logical gates
and the implementations of standard programmable circuits.
We cover Programmable Array Logic - PAL, Programmable
Logic Array - PLA and Field Programmable Gate Array -
FPGA. PLAs and PALs are rather simple, intuitive and easy
to understand, so students can see the meaning of each bit
used in their programming. This is not true for FPGAs, whose
conceptual structure is known, but the direct correspondence
between programming stream bits (generated by commercial
development tools) and each programmable element (either
pass transistors, LUT SRAM cells etc.) is unknown.

The working of an FPGA can be demonstrated to students
by describing some digital circuit using a hardware description
language (e.g. VHDL), then applying some magic (use multi-
gigabyte commercial programming tools) which will properly
configure the black box (i.e. the FPGA) and then observing
that the black box behaves as the described digital circuit
should. However, this approach is not adequate if deeper un-
derstanding of the technology is desired. In order to demystify
this process, students are often taught the conceptual structure
of FPGAs (for example, LUT-based implementations) and then
are left to imagine how everything else works.

Our research goal is to propose a tool that allows students
to explore the complete process which starts with a Boolean
function to be implemented, goes through each implementation
step and ends with a fully programmed FPGA. We believe that

introducing such a tool in class lectures could help students to
attain a much better understanding of the topic. Additionally, it
would be beneficial if for the resulting FPGA students would
be able to see the complete programming (every switch, every
memory cell, etc.) and if it would be possible to interactively
change the values on input pins and observe how signal
changes in each programmed element eventually result in a
new output value. Therefore, adhering to constructive research
methodology, we have developed a graphical portable Java-
based tool which emulates a variety of simplified LUT-based
FPGA architectures and which allows students to define an
FPGA architecture and a Boolean function to be implemented,
performs all implementation steps and finally offers a visual
inspection of the programmed FPGA as well as an interactive
simulation of its work.

II. RELATED WORK

The behavior of an FPGA can be defined either through
a schematic design or using a hardware description language
such as VHDL [1] or Verilog [2]. The process of mapping
the desired behavior to FPGA architecture is then carried out,
typically using proprietary software specific to each FPGA
manufacturer [3]. This process consists of Boolean function
decomposition, which determines how the Boolean function
will be fitted to CLBs, placement, which determines which
physical CLBs will be used, and routing, which determines
how the physical CLBs will be connected [4]. We now briefly
outline some important considerations in each stage and the
solutions proposed in literature.

1) Boolean function decomposition: The decomposition of
the user-specified Boolean functions needs to be carried out
in a manner that ensures that the functions can be realized
using the available type of CLBs. For instance, it could be the
case that a Boolean function is defined with n inputs, and the
available CLBs have k inputs where k < n. Furthermore,
redundancy should be minimized, so that CLBs should be
shared between different Boolean functions whenever possible.
As there are no computationally efficient algorithms that
guarantee optimal decomposition, a number of solutions have
been proposed in related work, optimizing according to various
criteria. For instance, Łuba and Selvaraj [5] propose represent-
ing the function by a set of r-partitions over the set of minterms
and interleaving serial and parallel decomposition strategies.



Nowicka et al. [6] propose an approach that produces a number
of solutions that meet different optimization criteria.

2) Placement and routing: When mapping to physical
CLBs, one major consideration is how to assign physical
CLBs so the latency between CLBs is minimized. Moreover,
determining which routing channels to use to connect two
CLBs is a complex optimization problem with many trade-
offs. For instance, one might connect two CLBs with the
shortest possible route to ensure minimum latency, which
might have the consequence that some other CLBs cannot be
connected using that channel resulting in unwanted latency in
some other components. Enzler et al. [7] propose a measure
of quantification of an FPGA design that enables early trade-
off considerations. Placement and routing can be optimized
using heuristic methods, such as e.g. genetic algorithms [8],
combined genetic algorithms and simulated annealing [9], or
other optimization techniques such as min-cut or quadratic
optimization [10].

3) Hardware constraints: When the logical design is trans-
ferred onto an actual physical chip, physical constraints of the
hardware environment should be respected. Physical FPGAs
are typically connected to other hardware in a fixed way
(for instance, pin 1 might be connected to a physical LED).
As an additional constraint, placement and routing should
take into account this hardware environment, so that logical
signals are mapped to appropriate pins. Being able to constrain
placement and routing is also important when optimizing
power consumption [11].

In our experience teaching FPGA design in early stages of
university education, students find it difficult to use proprietary
vendor-specific software for FPGA programming. We attribute
this to the fact that this type of software is mainly intended for
hardware professionals, exposing many complex options that
students do not learn in their curriculum. Additionally, many
of the inner workings of the synthesized FPGAs are hidden
from view, being protected as a trade secret. The tool proposed
in this paper help us to alleviate the described problems.

Existing e-learning solutions for FPGA design [12], [13]
mainly emphasize having the students interact with a physical
board. El Medany [12] proposes an FPGA hardware remote
laboratory that can be accessed by students over the inter-
net. Garcia-Zubia et al. [13] propose a system intended for
remotely teaching digital electronics that combines a step-by-
step digital circuit designer, a real FPGA board and a virtual
simulation of a complex watertank that is controlled by the
physical board. The virtual simulation aims to expand the
range of possible exercises that can be done using a remote
FPGA board, given that the outputs of such board are limited.
Further details on the proposed system can be found in [14].

We believe in the importance of teaching FPGAs to students,
as FPGA technology is widely used and constantly developed.
For instance, recently there has been an interest in combining
FPGAs with embedded microprocessors, as in e.g. Xilinx
Zynq-7000 programmable SoC [15], offering the possibility
to easily integrate and intermix the software programmability
of a processor and the hardware programmability of an FPGA.

III. SIMPLIFIED FPGA ARCHITECTURE

In order to explain the functioning and the programming
of an FPGA we have developed a simplified FPGA architec-
ture combined with a Java-based visualization and simulation
program. The main parts of this FPGA architecture are I/O
blocks, configurable logic blocks (CLBs), wiring segments,
switch boxes and programmable switches for signal input and
output from CLBs.

I/O blocks can be used to bring signals from the FPGA’s
environment into the FPGA (when configured as inputs) or to
bring Boolean functions calculated by the FPGA to the FPGA’s
environment (when configured as outputs). In our simplified
architecture, once programmed, a pin can not change direc-
tionality.

Configurable logic blocks in our architecture mimic typical
CLBs in todays mainstream FPGAs. Each CLB (see Figure 1)
is composed from a look-up table (LUT), a D flip-flop and a
multiplexer which selects what is routed to CLBs output: the
output of the LUT or the output of the flip-flop output.

Fig. 1. The structure of a CLB

A LUT is a structure which uses 2k user-programmable
SRAM cells and one multiplexer 2k/1 with k address inputs
which are also CLB inputs. Each SRAM cell is connected
to one data input of the multiplexer. This structure allows us
to directly realize any Boolean function of up to k variables
simply by writing its truth table into SRAM cells. To illustrate
how this works, Figure 2 shows an implementation of the
Boolean function f(A,B) = A ·B using a two-variable LUT.

Fig. 2. A LUT programmed to calculate f(A,B) = A ·B

In our simplified architecture, each CLB receives inputs
from the wiring segment located left from the CLB and



Fig. 3. FPGA programmed to generate function f = A ·B + C̄

generates output which can be placed onto the wire from
the wiring segment located right from the CLB. Each CLB
input has its own programmable multiplexer which can be
configured to route a signal from a single segment wire.
Outputs are routed into a segment wire using pass transistors.

The function of switch boxes is to route signals from input
pins or CLB outputs to output pins and CLB inputs. There
are various implementations of switch boxes, for example the
Disjoint Switch Box [16], [17], the Universal Switch Box [18]
and the Wilton Switch Box [19]. The switch boxes we use in
our simplified architecture allow the creation of connections
between wires from each segment and wires from remaining
segments.

An illustrative example is shown in Figure 3, where FPGA
is used to implement the Boolean function f = A · B + C̄.
The FPGA shown has four two-input CLBs in a 2× 2 matrix,
eight I/O pins, six horizontal and six vertical wire segments,
each comprised of two wires. Wire segments are connected
using nine switch-boxes. Only two CLBs are used for the
implementation of the given Boolean function (the left side
of FPGA). There are three input pins (denoted A, B and
C) and one output pin (denoted F) on which the function is
produced. The LUT programming in each CLB is also shown,
as well as the routing configured in switch boxes. Connections
established in each switch box are visualized in Figure 3 by
joining the connected signals with a line within the switch
box. For example, the upper-left switch box only establishes a
connection between the second horizontal wire and the second
vertical wire.

IV. FROM BOOLEAN FUNCTIONS TO PROGRAMMED
FPGAS: THE WORKFLOW

For students to acquire a deeper understanding of FPGA
technology (and to grasp why the commercial tools are so
complex), it is important to demonstrate the complete work-
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Fig. 4. The FPGA programming workflow

flow: how does one come from an abstract Boolean function to
a programmed FPGA chip. A simple diagram shown in Figure
4 illustrates this workflow.

One starts with a circuit description which is usually given
in some high level hardware description language such VHDL
[1] or Verilog [2]. This description is in a process called
synthesis converted into networks of basic logic gates. Using
rules of Boolean algebra, this representation can then be
converted into more adequate one (e.g. using minimization).
Then, the resulting Boolean functions which can be functions
of arbitrarily many variables should be decomposed into a
network of k-LUTs, where each LUT implements a Boolean
function of at most k-variables (k is typically a fixed parameter
of the available architecture). Then, for each LUT generated in
the decomposition procedure a physical LUT (i.e. CLB) must
be assigned in the FPGA chip and configured appropriately;
this process is called placement. After placement is done, I/O
pins must be allocated as well and then the switch boxes must
be configured so that each LUT gets the required input values.
This process is called routing.

Each of the aforementioned steps is non-trivial. For exam-
ple, how can we optimally create a function decomposition?
If we have more than one function to implement, how can
we decide if there are common subfunctions which can be
implemented once and then shared among function implemen-
tations? As mentioned previously, today these problems are
solved using heuristic algorithms.

When considering routing, one could start with the idea
to find shortest path between connected CLBs. However, the
routing problem we face here is the problem of simultaneously
finding routes for many pairs of CLBs which, considering
limited available wires in wire segments, can be hard or even
impossible for some bad LUT placements.

Additionally, the routing procedure can have an additional
constraint if the FPGA chip is in advance placed into a bigger
circuit where the external wiring is already decided so the
procedure does not have the freedom to select I/O pins for each
variable and function, but has to obey predefined placement
(e.g. function f must be routed to pin 5).

We will illustrate the difficulties one meets with the decom-
position procedure on a simple example of finding the optimal
decomposition for the Boolean function

f(A,B,C) = A · B̄ · C + B · C̄

using 2-LUTs.
One approach could be to utilize the Shannon decomposi-

tion theorem [20] (sometimes also referred to as an expansion)



which states that for each Boolean function F the following
holds: F = x̄ · Fx̄ + x · Fx where x is any variable, Fx̄ is
the function obtained from F by setting x = 0 and Fx is
the function obtained from F by setting x = 1. We proceed
recursively to decompose Fx̄ and Fx until we end up with
subfunctions of only two variables. This decomposition is
shown in Figure 5.

f (A ,B , C) = A
(
BC

)︸ ︷︷ ︸
f1(B,C)︸ ︷︷ ︸

f3(A, f1)

+ A
(
BC + BC

)︸ ︷︷ ︸
f2(B,C)︸ ︷︷ ︸

f4(A, f2)︸ ︷︷ ︸
f5(f3, f4)

Fig. 5. Decomposition based on the Shannon decomposition theorem

Using this approach we have used five 2-LUTs. The 2-LUTs
are used to implement following subfunctions.

f1(B,C) = B̄ · C

f2(B,C) = B · C̄ + B̄ · C

f3(A, f1) = Ā · f1

f4(A, f2) = A · f2

f = f5(f3, f4) = f3 + f4

We see that this decomposition could not be implemented
into the FPGA from Figure 3 which only has four 2-LUTs. We
can try a different approach hoping to end up with a smaller
number of 2-LUTs. Since the 2-LUTs cannot implement a
Boolean function of three variables, a naive approach would
be to group variables and subfunctions into subfunctions of
only two variables. This approach is shown in Figure 6.

f (A ,B , C) = A BC︸︷︷︸
f1(B,C)︸ ︷︷ ︸

f2(A, f1)

+ BC︸︷︷︸
f3(B,C)

︸ ︷︷ ︸
f4(f2, f3)

Fig. 6. Naive decomposition

Using this approach we have used only four 2-LUTs.
However, the described approach lacks a clear strategy on the
grouping order.

Finally, it is possible to rewrite the given function in such
a way that only three 2-LUTs are required for its implemen-
tation. This decomposition is shown in Figure 7.

For commercial tools non-introductory course would now
continue to describe many heuristic approaches for solving this
problem. However, on an introductory course, examples such
as the described one are quite enough to illustrate the problem,
to create interest in students into the possible ways for solving

f (A ,B , C) = ABC + BC = (A + C)︸ ︷︷ ︸
f1(A,C)

· (B � C)︸ ︷︷ ︸
f2(B,C)︸ ︷︷ ︸

f3(f1, f2)

Fig. 7. Better decomposition

it and to demonstrate that such problems can be solved more-
or-less successfully, and various solvers are an integral part of
commercial packages for programming FPGAs.

The final step of the described workflow is preparing a
configuration file for FPGA. This configuration file (called
bitstream and often saved in JEDEC file format) is a stream
of bits where each bit represents some configuration detail in
the FPGA chip (for example, content of SRAM cells in LUTs,
configuration of the output multiplexer in a CLB, configuration
for each pass transistor, configuration for each I/O block,
configuration for each input multiplexer which passes a value
from single segment wire to address input of the LUT’s
multiplexer, etc). For commercially available FPGA chips the
meaning of each bit in this bitstream is not publicly known;
that way FPGA chip producers tie the users to buy and work
with their own set of tools.

V. THE DEVELOPED TOOL

In order to demonstrate the most of the described workflow
steps, we have developed a Java based tool for programming,
visualization and simulation of a family of simple FPGA chips.

Fig. 8. The developed tool: first step



When the program is started, the user begins by specifing
the FPGA architecture (see the top part of Figure 8). The user
can define the following parameters.

• Number of CLB inputs (the k in the previous section).
The user can decide to use 2-LUTs, 3-LUTs, etc.

• Number of CLBs in each row.
• Number of CLBs in each column.
• Number of wires per each wire segment.
• Number of I/O pins per wire segment.

Using these parameters a wide variety of FPGAs can be
simulated. The architecture defined by parameters shown in
Figure 8 used four 3-LUTs in 2× 2 matrix having 2 I/O pins
per wire segment and 3 wires per wire segment.

In the middle of Figure 8 a text box is shown, in which the
user can specify a Boolean function to be implemented. At
this moment, we only allow one function. The function can
be entered using a simple infix notation with standard Boolean
operators AND, OR, XOR, NAND, NOR, XNOR and NOT.
The function shown in Figure 8 is a 4/1 multiplexer having
data inputs d0, d1, d2, d3 and address inputs s1 and s0:

f = s̄1 · s̄0 · d0 + s̄1 · s0 · d1 + s1 · s̄0 · d2 + s1 · s0 · d3.

The decomposition process is started when the left central but-
ton is pressed (Croatian: Pokreni dekompoziciju). The progress
and output is written in the text area on the bottom. In this
example, the decomposition process finished with following:

Function is at output: 2
CLB(0): D2 S0 D3
00011101

Fig. 9. The developed tool: second step

CLB(1): D0 D1 S0
11100100
CLB(2): CLB(1) S1 CLB(0)
11010001
CLB(3): D0 D2 CLB(2)
00011000

For each CLB the signals for LUT inputs are written (starting
with the most significant) and then the LUT configuration is
written. Let us examine a bit closely the function of CLB(0).
The function it realizes is
f(D2, S0, D3) =

∑
minterm(3, 4, 5, 7)

= D̄2 · S0 · D3 + D2 · S̄0 · D̄3 + D2 · S̄0 · D3 + D2 · S0 · D3

= S̄0(D2 · D̄3 + D2 · D3) + S0(D̄2 · D3 + D2 · D3)

= S̄0 · D2 + S0 · D3

which is multiplexer 2/1 which multiplexes D2 or D3 based
on S0. The CLB(1) is also a multiplexer 2/1 which multiplexes
D0 or D1 based on S0. Finally, the CLB(2) on which the
function is realized is also multiplexer 2/1 which multiplexes
output of CLB(0) and CLB(1) based on S1. It is trivial to see
that the decomposition procedure has created a multiplexer
tree realizing multiplexer 4/1 using a tree of multiplexers 2/1.

Once the decomposition is done, the user can proceed to
the second tab which is shown in Figure 9. On this tab one
can select the mapping algorithm (currently, we offer only
one) and then can start the mapping procedure by pressing
the central left button (Croatian: Pokreni mapiranje). This will
start both the placement procedure and the routing procedure.
The results and the final report will be written in the text area
at the bottom of the window.

Once this is done, the user can proceed to the last tab which

Fig. 10. The developed tool: third step



is shown in Figure 10.
Here we can see the final configured FPGA chip. We can

inspect all wiring and switch-boxes and CLB configuration,
and by clicking on any CLB while holding the CRTL key,
we can get a detailed schematic of the CLB. In the shown
case, the placement and routing algorithm placed inputs D0,
D1 and D3 along the left side of chip, D1 along the bottom
side, S0 along the top side and S1 and output F along the right
side. If user enables Simulation mode (checkbox Simulacija),
values on input pins can be selected by clicking while the
outputs will be automatically calculated for each CLB. In the
shown example we have d3d2d1d0 = 0100, s1s0 = 10 so the
multiplexer output should be equal to d2 and so F = 1.

By using the synthesised FPGA in interactive mode, stu-
dents can observe each aspect of its functioning in real time.
Using this tool allows us to demystify the fundamentals of
FPGA technology and explain what commercial tools do.

It is important to note that the algorithms implemented in
this tool for various stages are not commercial-grade algo-
rithms: our intention was to build an educational tool. The
algorithms we used are based on evolutionary computations.
Specifically, we have implemented a variant of a genetic
algorithm for Boolean function decomposition which is similar
to Cartesian Genetic Programming [21]. Another variant of a
genetic algorithm was used to solve the placement and the
routing problem as well as configuration simplification.

VI. CONCLUSION AND FUTURE WORK

In this paper we have described a platform independent Java
based tool for programming, visualization and simulation of
simplified FPGAs. We have developed this tool in an effort to
enable students to better understand what an FPGA is, how it
works and how it is programmed.

In academic year 2015/2016 we have introduced the tool
in class and were able to obtain a much better interaction and
discussion with students while presenting the FPGA topic. Stu-
dents tended to ask much more focused and related questions
which was not the case in previous years. This is a strong
indication that the students acquired a better understanding of
the topic, which was our research goal.

Currently, the developed tool allows the user to customize
the FPGA architecture but to enter only a single Boolean
function to be synthesized. For educational purposes this is
quite enough since it allows us to illustrate most of the
steps which commercial tools do. However, we are planning
an extension of this work on several fronts. We plan to
allow the synthesis of multiple Boolean functions as well as
the synthesis of sequential circuits. Also, to make the user
experience closer to the one offered by the commercial tools,
we plan to implement support for circuit synthesis described
by the user using a simple subset of the VHDL language
(which we also use on laboratory exercises). Finally, another
extension of current work will be to allow the user to manually
program the FPGA circuit directly by mouse (clicking on a
connection, dragging to configure switchboxes, clicking to set
SRAM content in LUTs etc.).
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