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Abstract

Boolean functions represent an important primitive in the design of various cryptographic algorithms. There exist
several well-known schemes where a Boolean functions is used to add nonlinearity to the cipher. Thus, methods
to generate Boolean functions that possess good cryptographic properties is an important research goal. Among
other techniques, evolutionary computation has proved to be a well-suited approach for this problem. In this paper,
we present three different objective functions, where each examines important cryptographic properties of Boolean
functions, and examine four evolutionary algorithms. Our research confirms previous results, but also sheds new
insights on the effectiveness and comparison of different evolutionary algorithms for this problem.
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1. Introduction

In the last few decades there has been significant research on the Boolean functions, for cryptography as well for
other uses like algebraic coding and sequence design [1, 2, 3, 4]. Accordingly, there exist many different approaches
for the construction of Boolean functions as well as numerous rationales behind the choice of properties relevant for
such functions. Although Boolean functions in cryptography have a less prominent position than 20 or more years
ago, they still represent an important cryptographic primitive. In this paper, we concentrate on the use of Boolean
functions as building blocks in filter and combiner generators [4].

Boolean functions are often the only nonlinear element in stream ciphers and without them a cipher would be
trivial to break. Therefore, it is not surprising that there exists a substantial body of work on methods of generating
Boolean functions. However, such applications of Boolean functions in cryptography are not the only ones. For
instance, they can be also used to resist side-channel attacks. When discussing side-channel countermeasures, one
important class contains masking schemes. In masking schemes, one randomizes the intermediate values that are
processed by the cryptographic device. One obvious drawback of such an approach is the masking overhead that
can be substantial in embedded devices or smart cards. However, correlation immune Boolean functions reduce the
masking overhead in two ways [5, 6]. However, most of the algebraic constructions are designed to produce balanced
Boolean functions and are therefore not suitable for this task. Consequently, it would be beneficial to have some other
method of constructing Boolean functions.

We distinguish between three main approaches for generating Boolean functions for cryptographic usages: alge-
braic constructions, random generation and heuristic constructions (and various combinations of these approaches) [7].
Algebraic constructions use some mathematical procedure to create a Boolean function with good cryptographic prop-
erties. One example of such a construction is the Maiorana-McFarland construction [4]. The random generation of
Boolean functions also has its strong points, the most prominent being that it is easy and fast. However, the resulting
Boolean functions usually have suboptimal properties for cryptographic usages [8]. Heuristic methods offer an easy
and efficient way of producing a large number of Boolean functions with very good cryptographic properties [2].
Among different heuristic approaches, evolutionary computation (EC) and more specifically evolutionary algorithms
(EAs) offers highly competitive results when generating Boolean functions for cryptography [9, 10]. It is worth men-
tioning that EAs can be used either as the primary or the secondary construction method. In primary constructions
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one obtains new functions without using known ones. In secondary constructions, one uses already known Boolean
functions to construct new ones (either with different properties or sizes) [4].

In this paper, we experiment with several different EAs in order to explore their efficiency in the evolution of
Boolean functions with properties necessary for use in cryptography. More precisely, we investigate four EAs, namely,
Genetic Algorithms (GAs), Genetic Programming (GP), Cartesian Genetic Programming (CGP), and Evolution Strate-
gies (ES). Furthermore, instead of concentrating on only one objective, we investigate three objectives, represented
with different fitness functions. Since we experiment with several methods and fitness functions, it is not feasible to
conduct experiments with all possible parameter combinations. Therefore, we restrict our attention to combinations
which, based on our previous results and usual settings for those algorithms, provide acceptable results. Indeed, four
algorithms combined with three fitness functions already give twelve combinations. Considering different variation
operators, as well as different selection mechanisms, gives a prohibitive number of possible combinations.

Since an investigation of any one of the four aforementioned algorithms on a single objective could easily consti-
tute a whole paper, this work should be regarded as a practical guide and not as an in-depth analysis. However, it is
worth noting that we perform more than 30 000 independent experimental runs for various EAs in order to conduct
statistical analysis. We concentrate here only on Boolean functions with eight inputs. Eight inputs is a small size for
Boolean functions for stream ciphers (it is commonly considered that 13 is a strict minimum for resisting algebraic
attacks), but we still believe it is an interesting case. Indeed, for instance ciphers RAKAPOSHI [11] and Achter-
bahn [12] use Boolean functions of that size. Evolving Boolean functions is a challenging task because there exist 2"
possible Boolean functions of n inputs (for eight inputs this gives 22°° candidate solutions). Therefore, with anything
more than five inputs it is impossible to do an exhaustive search. Furthermore, with larger sizes of Boolean functions
the search space grows, but also the computational complexity of its various properties grows. Thus, it is unrealistic
to expect that EAs can work for much larger sizes than 13 inputs. The reason for this is that the computation of the
algebraic immunity property becomes rapidly prohibitive for large numbers of inputs. For instance it requires less
than 1 s for a Boolean function with 11 inputs, but around 860 s for function with 14 inputs.

The rest of this paper is organized as follows. In Section 2, we present several applications of stochastic algorithms
when generating Boolean functions appropriate for cryptographic usages. Section 3 presents relevant representations
and cryptographic properties of Boolean functions. Next, in Section 4 we give fitness functions used in our exper-
iments. Section 5 deals with the experimental setup and EAs we use. In Section 6, we give results for each of the
objective functions as well as a short discussion on the results. Finally, we end with a short summary in Section 7.

2. Related Work

As noted, there have been many applications of heuristic methods for the generation of Boolean functions for
cryptographic usages. Here we describe previous work directly related to our investigation in a chronological order.
As far as the authors know, the first application of GA to the evolution of cryptographically suitable Boolean functions
emerged in 1997. Millan et al. experimented with GAs to evolve Boolean functions with high nonlinearity [13].

In his thesis, Clark presents several applications of optimization techniques in the field of cryptology [14]. One of the
applications is the evolution of Boolean functions with high nonlinearity using GA and hill climbing techniques.
Millan et al. use GAs to evolve Boolean functions that have high nonlinearity [15]. In conjunction with the GA they
use hill climbing together with a resetting step in order to find Boolean functions with even higher nonlinearity. They
experimented with Boolean function sizes of up to 12 inputs and found balanced Boolean functions with nonlinearity
112 and correlation immunity equal to one.

Millan et al. used variations of a hill climbing method in order to find Boolean functions that have high nonlinearity
and low autocorrelation [16].

Clark and Jacob experimented with two-stage optimization to generate Boolean functions [17]. They used a combi-
nation of simulated annealing (SA) and hill climbing with a cost function motivated by Parseval theorem in order to
find functions with high nonlinearity and low autocorrelation.

Clark et al. used SA to generate Boolean functions with cryptographically relevant properties [18]. In their work, they
considered balanced function with high nonlinearity and with the correlation immunity less and equal to two.

Kavut and Yiicel develop improved cost function for a search that combines SA and hill climbing [19]. In their ap-
proach, the authors were able to find some functions of eight and nine inputs that have a combination of nonlinearity
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and autocorrelation values previously unattained. They also experimented with a three-stage optimization method that
combines SA and two hill climbing algorithms with different objectives.

Clark et al. experimented with SA in order to design Boolean functions using spectral inversion [20]. They ob-
served that many cryptographic properties of interest are defined in terms of the Walsh-Hadamard transform values.
Therefore, they worked in the spectral domain where the cost function punishes those solutions that are not Boolean
functions. On the basis of Parseval’s theorem one can infer what values should be in a Walsh-Hadamard spectrum.
However it is impossible to say what the positions should be. Therefore, when generating a Walsh-Hadamard spec-
trum it is necessary to make an inverse transform to verify that spectrum indeed maps to a Boolean function.

Burnett et al. presented two heuristic methods where the goal of the first method was to generate balanced Boolean
functions with high nonlinearity and low autocorrelation. The second method aimed to generating resilient functions
with high nonlinearity and algebraic degree that maximizes the Siegenthaler inequality [21].

Millan et al. proposed a new adaptive strategy for a local search algorithm for the generation of Boolean functions with
high nonlinearity [8]. Additionally, they introduced the notion of the graph of affine equivalence classes of Boolean
functions.

Burnett in her thesis used three heuristic techniques to evolve Boolean functions. The first method aimed to evolve
balanced functions with high nonlinearity. The second method was used to find balanced Boolean functions with high
nonlinearity that are correlation immune. The last method was used to find balanced functions with high nonlinearity
and propagation characteristics different from zero [2]. Furthermore, she experimented with the evolution of S-boxes.
Aguirre et al. used a multi-objective random bit climber to search for balanced Boolean functions of size up to eight
inputs that have high nonlinearity [22]. Results indicate that the multi-objective approach is highly efficient when
generating Boolean functions that have high nonlinearity.

Izbenko et al. used a modified hill climbing algorithm to transform bent functions to balanced Boolean functions with
high nonlinearity [23].

McLaughlin and Clark on the other hand used SA to generate Boolean functions that have optimal values of algebraic
immunity, fast algebraic resistance and algebraic degree [24]. In their work, they experimented with Boolean func-
tions with up to 16 inputs.

Picek, Jakobovic and Golub experimented with GA and GP to find Boolean functions that possess several optimal
properties [9]. As far as the authors know, this is the first application of GP for evolving cryptographically suitable
Boolean functions.

Hrbacek and Dvorak used CGP to evolve bent Boolean functions of size up to 16 inputs [25]. The authors experiment
with several configurations of algorithms in order to speed up the evolution process. They did not limit the number of
generations and therefore succeed in finding bent function in each run for sizes between 6 and 14 inputs.

Several EAs are used by Picek et al. to evolve Boolean functions that have better side-channel resistance [10]. This pa-
per presented the first application of optimization techniques for searching for Boolean functions that have improved
differential power analysis (DPA) resistance.

With the goal of finding maximal nonlinearity values of Boolean functions, Picek et al. experimented with several
EAs [26]. Furthermore, they combined optimization techniques with algebraic constructions in order to improve the
search. Although they were unable to find balanced Boolean function with nonlinearity equal to 118, they presented
several possible avenues of work to follow when looking for highly nonlinear balanced Boolean functions.

Picek et al. compared the effectiveness of CGP and GP approach when looking for highly nonlinear balanced Boolean
functions of eight inputs [27]. In this work, the authors show that CGP performs favorably when compared with some
other evolutionary approaches when evolving cryptography relevant functions.

Finally, Picek et al. investigated several EAs in order to evolve Boolean functions with different values of the cor-
relation immunity property. In the same paper, the authors also discuss the problem of finding correlation immune
functions with minimal Hamming weight, but they only experimented with Boolean functions that have eight in-
puts [28].

It is evident from the list above (we emphasize that this is not even a complete list) there has been a multitude of works
in the application of optimization techniques to the generation of Boolean functions. Thus, what separates this work
from the others? Firstly, although we experiment with the same (or very similar) objectives as in some of the related
literature, we use different EAs. Indeed, some of the algorithms we use were never before applied on such problems.
Furthermore, we conduct an extensive analysis on the influence of certain algorithm parameters in the effectiveness
of the search. Lastly, we give comprehensive comparison of EAs for evolving cryptographically suitable Boolean
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functions.

3. Boolean Functions Properties and Representations

Let n, m be positive integers, i.e. n,m € N. The set of all n-tuples of the elements in the field I, is denoted as 7
where IF; is the Galois field with 2 elements. The set I represents all binary vectors of length n and it can be viewed

as a [F,-vectorspace [4]. The inner product of two vectors d and b is denoted as @ - b and equals a - b= @ ,a;b;. Here,
“@” represents addition modulo two (XOR). The hamming weight (HW) of a vector @, where @ € F2, is the number
of non-zero positions in the vector. The support supp of a vector d, where @ € F”, is the set containing the non-zero
positions in the vector d.

An (n, m)-function is any mapping F from [} to 7. If m equals 1 then the function f is called a Boolean function.
The set of all Boolean functions is denoted as BF,, [4].

3.1. Boolean Function Representations and Properties
A Boolean function f on [} can be uniquely represented by a truth table (TT), which is a vector (f (6), e S f))

that contains the function values of f, ordered lexicographically, i.e. d@ < b [4].

The support supp of a Boolean function f is a set containing the non-zero positions in the truth table (TT)
representation, i.e. supp(f) = {x: f(x) = 1}, see e.g. [4].

The Walsh-Hadamard transform Wy (some authors also call it Walsh transform or Hadamard transform) is a
second unique representation of a Boolean function that measures the correlation between f(¥) and the linear function
a- ¥[29, 30]. The Walsh-Hadamard transform of a Boolean function f equals:

Wi@ = ) (=), )

Xelr

A third unique representation of a Boolean function f on F is a representation by means of a polynomial in

F [x0, ..o, Xn=1] /(X5 = X0, ..., X2_ — X,—1). This form is called algebraic normal form (ANF) [4]. ANF is a multivariate
polynomial defined as [31]:

f(®) = ersh(@ - &, o)

where h(d) is defined by the Mdbius inversion principle
@) = ®z<af(X), for any d € F;. 3)
For a Walsh-Hadamard transform, a Boolean function f is balanced if [32, 29]:
W (0) = 0. )
The nonlinearity Ny of a Boolean function f can be expressed in terms of the Walsh-Hadamard coefficients as [4]:
Ny =2~ S mage W@ )
A Boolean function f is bent if it has maximum nonlinearity equal to [33, 34, 4]:
Np=2""1 2271 (6)

A Boolean function f is correlation immune of order ¢ (in brief, CI(?)) if the output of the function is statistically
independent of the combination of any ¢ of its inputs [35]. For the Walsh-Hadamard spectrum it holds that [36]:

W(@) =0, for 1 < HW(@) < 1. )

A Boolean function f is t-resilient if it is balanced and with correlation immunity of degree 7 [35].



The algebraic degree deg of a Boolean function f is defined as the number of variables in the largest product term
of the ANF of the function with a non-zero coefficient [4, 37]:

deg = max(HW(d) : h(d) = 1). 8)

Here, h(d) is defined by the Mobius inversion principle.
The algebraic immunity (AI) of a Boolean function f is the lowest degree of the function g from F into I, for

which - g = 0 or (fe f) ‘g = 0 where f and g are Boolean functions. Here, f - g denotes the function whose support
is the intersection of the supports of f and g (- does not represent the dot product between two vectors). A function g
such that f - g = 0 is called an annihilator of f [31, 4]. For an in-depth treatment of properties of Boolean functions,
we refer interested readers to [29, 4, 38, 37].

4. Fitness Functions

The following properties of Boolean functions play an important role in the security of filter and combiner gen-
erators and are considered in our experiments: nonlinearity, correlation immunity, balancedness, bentness, algebraic
immunity and algebraic degree [4]. Note that there exist other relevant properties, like the fast algebraic immu-
nity [39], but we do not consider them in this paper. We follow this approach for two reasons. Firstly, these are the
most researched properties in related literature. Secondly, we aim to experiment with a smaller number of the fitness
functions, but with more EAs variations within each objective. Furthermore, we select all fitness functions so that it is
clearly possible to define what is the goal, i.e. what properties Boolean functions need to possess in order to say they
are the best possible (i.e. to find global optimum).

We start with the simplest fitness function and then gradually make fitness functions more complicated. However,
already the second function is difficult, but this is because the underlying cryptographic problem is difficult and not
because of the complexity of the fitness function (e.g. having a large number of terms).

4.1. The First Objective

As stated, we start with the simplest fitness function in terms of number of parameters. This function has only one
parameter and that is the nonlinearity property.

In order to provide confusion, a Boolean function should lie at a large Hamming distance (HD) from all affine
functions. The nonlinearity Ny of a Boolean function f is the minimum HD between the function f and affine
functions [4].

The upper bound for the nonlinearity property is often called the covering radius bound and is given as follows:

Ny < 2"t - 2371, )

Furthermore, the maximum nonlinearity of functions in I} coincides with the covering radius p of the first order
binary Reed-Muller code, i.e. RM(1,n) [4]. This bound can be strict only when a Boolean function f has an even
number of inputs. If such functions have the maximum nonlinearity they are called bent functions. However, bent
functions are not balanced, i.e. their values are not uniformly distributed and are therefore not appropriate for use in
filter and combiner generators [4].

Since we just stated that bent functions are not appropriate as parts of filter and combiner generators, the question
is why we are still interested in methods of generating them. The first reason is that this problem can be used as a
benchmark to test various EAs. The second reason lies in the fact that from bent functions it is possible to build highly
nonlinear functions that are balanced [4].

How difficult is the problem of evolving bent Boolean functions? The answer to this question depends on the input
size of a Boolean function and the number of bent Boolean functions.

However, there is no known efficient lower bound for an n-variable Boolean function. A naive upper bound
equals [4]:

upper_bound = 227 +1), (10)



We can observe that there exist a huge number of bent Boolean functions and therefore we could expect this
problem not to be too difficult for the EAs.
To evolve bent Boolean functions we use the following fitness function where the goal is maximization:

fitness; = Ny. (11

From the Eq. (9) it is apparent that we are looking for a Boolean function with the nonlinearity equal to 120 (i.e.
|Wy(@)| = 22 forall @ € F2).

We note that, here we chose to work with a difficult fitness functions from the EC perspective. This is apparent
since we look for the maximal nonlinearity value only on a basis of the worst Walsh-Hadamard coefficient. This
implies that there is no gradient information that can help lead the search from one nonlinearity value to the other.
For example, when having nonlinearity 116, the next better one is 118 and between those two values there is no
information that can help in the search, which means that at that moment we effectively do a random search. All the
fitness functions presented here may be redefined to account for all the Walsh-Hadamard values which in turn gives
much more information about the quality of a certain solution.

4.2. The Second Objective

Sarkar and Maitra showed that if a CI(¢) (see Eq. (7)) Boolean function f has an even number of inputs n and
k < 5 — 1, then its nonlinearity N has an upper bound as follows [40]:

Np<2mt 227t ok (12)

where k equals ¢ + 1 if f is balanced or has Hamming weight divisible by 2/*! and k equals ¢ otherwise.
In the case when k > 5 — 1 then the nonlinearity has the upper bound:

Ny <2t -2k, (13)

There exist bounds that are more precise, but the previously mentioned one is sufficiently precise to define our
search objective [4]. In the second set of experiments we concentrate only on Boolean functions where t + 1 < § — 1.
This nontrivial bound is called Sarkar-Maitra divisibility bound [4] and it implies that the maximum nonlinearity for
n = 8 and r = 0 equals 118. Here, + = 0 means that the function is balanced, but with correlation immunity equal to
Zero.

In the second experiment, we search for a balanced function with the maximum possible nonlinearity and correla-
tion immunity equal to zero. In doing so we use the following fitness function where the objective is maximization:

fitness, = BAL + Ny. (14)

We use the balancedness property (BAL) as a penalty. As evident from the Algorithm 1, when the function is bal-
anced, it receives a value (reward) of one while unbalanced functions get penalty proportional to their unbalancedness.
We need to evaluate the balancedness property since when working with representations different from bitstrings it is
difficult to create random initial population comprised of only balanced Boolean functions.

Algorithm 1 Calculate balancedness.

ones = HW (TT)
zeros = 2" - ones
if zeros == ones then
return 1
else
return |ones — zeros|- X
end if

We experimentally find that X = -5 scales well for Boolean functions with n = 8 inputs. We experimented with
several algorithms for calculating balancedness penalty where results show similar performance as long as the penalty
is calculated gradually.



We can restate Eq. (14) as a two-stage fitness function. In that design configuration, only the balancedness is tested
at first, and nonlinearity value is added only if the function is balanced. This represents an option commonly used in
EAs when one is trying to optimize one quantity under a strict constraint. However, our previous results show that
when evolving balanced Boolean functions with maximum nonlinearity, one stage fitness (as in the Eq. (14)) performs
better [27] than the two-stage approach. This also makes our experimental setup somewhat easier since otherwise we
would need to conduct experiments with two stage fitness functions for all algorithms.

4.3. The Third Objective

For a Boolean function to be useful in filter generators, it needs to be balanced, with high nonlinearity, high
algebraic immunity and a high algebraic degree. Furthermore, to be used in a combiner generator it also needs to have
a good correlation immunity value [24, 4, 35].

Notice that in previous sentence we speak of “high” and “good” values. First we discuss what good values are
and then, what are the upper bounds for the relevant properties. Next, we give a short overview of the security roles
of each property in the cipher security.

Boolean function needs to be balanced (for sufficiently large n) to prevent being able to distinguish its output from
some random sequence [4]. Boolean functions needs to have high nonlinearity value in order to resist against fast
correlation attacks [41]. We already discussed what are the maximum possible values on nonlinearity for z-resilient
Boolean functions with even number of inputs in Eq. (12) and (13). In our second objective we search for Boolean
function with correlation immunity equal to zero and in our third objective we search for Boolean functions that have
correlation immunity larger than zero.

Recall that earlier we mentioned that we are looking for Boolean functions that have good correlation immunity
values. First, we need to answer what are good values. When a Boolean function is used in a filter generator,
correlation immunity value of one is usually considered sufficient [42]. To obtain this value, often it is possible
to replace a Boolean function that has other good properties with a linearly equivalent one that has the correlation
immunity equal to one [42].

However, when using Boolean functions in a combiner generator, high values of correlation immunity are neces-
sary to resist the Siegenthaler correlation attack [35]. Therefore, in our experiments we look for Boolean functions
that have correlation immunity equal or larger than two which we believe is sufficient for a Boolean function with
eight inputs.

Next, a Boolean function needs to have high enough value of algebraic degree in order to resist against Berlekamp-
Massey attack [43] and Rgnjom-Helleseth attack [44].

The correlation immunity and the algebraic degree are conflicting properties and it is not possible to obtain a
Boolean function with both properties optimal. For a resilient Boolean function where t > 1 and ¢ # n — 1, the
Siegenthaler inequality holds [35]:

t<n-deg-1. (15)

Otherwise, the inequality is as follows:
t<n-—deg. (16)

Lastly, Boolean functions need to have high values of algebraic immunity in order to resist against algebraic
attacks [45]. The algebraic immunity is upper bounded by the number of input variables, more precisely [46]:

Al < E} (17)

Therefore, in the third objective we aim to find Boolean functions that are suitable for combiner generators. Here,
the goal is maximization of the following fitness function:

fitnessy = BAL + 1+ 6,5(Ny + Al + deg). (18)

Our previous results show that if both correlation immunity and algebraic degree properties are present in the
fitness function, algebraic degree value dominates over correlation immunity [9]. Here we use a two stage fitness in
which a fitness bonus equal to the sum of nonlinearity, algebraic immunity A/ and algebraic degree deg is awarded only
to a genotype that is 2-resilient (i.e when BAL = 0 and ¢ = 2); otherwise, the fitness is only the sum of balancedness
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penalty and the correlation immunity (Eq. (18)). The delta function J;, takes the value one when ¢ = 2 and is zero
otherwise.

Based on the previous equations, in the third objective we look for the balanced Boolean functions that have the
nonlinearity 112, correlation immunity 2, algebraic degree 5, and algebraic immunity 4.

4.4. Modifications of Fitness Functions

We note that all fitness functions could have been stated differently. Here we discuss two most prominent possi-
bilities. The first option is to change the way how the nonlinearity is calculated. Instead of looking just the extreme
value of the Walsh-Hadamard transform, one can use the following cost function [47]:

cost(f) = ) || W@ - x|, (19)

where X and R are real valued parameters. We acknowledge that using the aforementioned function can result
in significant improvements of results, but at the cost of two more additional parameters that needs to be carefully
chosen (which is not necessary trivial). Therefore, when working with the fitness function as in this paper, we follow
the first case scenario (since we use the minimum useful information from the Walsh-Hadamard spectrum).

The second option is concerned with the third objective and the way how we calculate the correlation immunity
property. Instead of accepting only those functions that have the correlation immunity property equal to 2, we can
work with the correlation immunity deviation as defined in [15]:

cidev (1) = max((W(@)|; 1 < |d| < 1). (20)

Alternatively, one can use an even more complex function as defined in [18]. However, here we do not follow
those directions since our experiments [27, 28] show that at least CGP and GP algorithms are powerful enough to find
Boolean functions with correlation immunity larger than one. Therefore, once more, we can consider our case as the
worst case scenario. Naturally, by using the correlation immunity deviation, one should expect the results to be better
than with our fitness function. We leave such modifications of fitness functions for future work.

We conclude this section with the quote from [4]: “But designing constructions leading to large numbers of
functions achieving good trade-offs between the nonlinearity, the algebraic degree and the resiliency order (if possible,
on any numbers of variables) are still necessary for permitting to choose in applications cryptographic functions
satisfying specific constraints.”

5. Experimental Setup

Here, we give details about experimental setup for each of the algorithms as well as the common parameters for all
algorithms. For each of the algorithms we conduct a two parameter sweep in order to investigate the best combination
of parameters. Since there are more than two parameters for every algorithm, we try to look only at the most obvious
choices for the tuning. For that reason, with GA and GP, we use the k-tournament steady-state selection in Algorithm 2
(with k = 3) to avoid the need for crossover probability choice. Additionally, in order to have a baseline against which
all algorithms efficiency can be tested we also experiment with the random search.

Algorithm 2 Steady-state tournament selection

randomly select k individuals;

remove the worst of k individuals;

child = crossover(best two of the tournament);

perform mutation on child, with given individual mutation probability;
insert child into population;




5.1. Random Search

In random search, solutions are generated by creating uniformly at random solutions in a form of a truth table.
We generate 500000 random solutions (Boolean functions) and test their cryptographic properties. Random search
constrained only to balanced solutions for the second and third objective.

5.2. Genetic Algorithm

We use a simple GA with tournament selection where its size equals to 3 [48]. A mutation is selected uniformly
at random between a simple mutation, where a single bit is inverted, and a mixed mutation, which randomly shuffles
the bits in a randomly selected subset. The crossover operators are one-point and uniform crossover, performed at
random for each new offspring. For each of the fitness functions we experiment with population sizes of 50, 100, 200,
500, 1000, 2000, 5000, and 10 000 and individual mutation probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. It is important
to note that we use the mutation probability to select whether an individual would be mutated or not, and the mutation
operator is executed only once on a given individual. E.g. if the mutation probability is 0.9, then on average 9 out of
every 10 new individuals will be mutated (see Algorithm 2), and one mutation will be performed on that individual.

5.3. Evolution Strategy

When experimenting with ES we use (u + A)-ES. In this algorithm, in each generation, parents compete with
offspring and from their joint set mu fittest individuals are kept. In our experiments offspring population size A has
values of 5, 10, 15, 20, 50, and 100. Parent population size u has values of 1, 2, 5, 10, 20, 50, 100, 200, and 500.

5.4. Genetic Programming

We use tree-based GP in which a Boolean function is represented by a tree of nodes [49]. The function set for
GP in all the experiments is OR, XOR, AND, XNOR, and AND with one input inverted. Terminals correspond to
n Boolean variables. Boolean functions can be represented only in XOR and AND operators, but it is quite easy to
transform it from one notation to other. GP uses tournament selection with tournament size 3.

The crossover is performed with five different tree-based crossover operators selected at random: a simple tree
crossover with 90% bias for functional nodes, uniform crossover, size fair, one-point and context preserving crossover [50].
We use a single mutation type, a subtree mutation, and experiment with tree depth sizes of 5, 7, 8, 9 and 11 and pop-
ulation sizes of 50, 100, 200, 500, 1 000, 2 000, 5000 and 10 000.

5.5. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) represents computational functions as a directed graph [1, 51]. The func-
tion set ny for the CGP is the same as for the GP. Setting the number of rows to be one and levels-back parameter to
be equal to the number of columns is regarded as the best and most general choice [52]. This choice should be used
when there is no specialist knowledge about the problem.

However, this still leaves us to decided on the number of columns. Furthermore, CGP usually uses small pop-
ulation sizes and has no crossover operator [52]. Determining the best combination of maximum number of nodes
(gates in this case) and mutation rate is an important step in hitting the parameter sweet spot for CGP. Indeed, it has
been shown that generally very large genotypes and small mutation rates perform very well [53]. For this reason we
experiment with genotype sizes 100, 300, 500, 700, 900, 1 100, 1300, 1500, 1700, and 1900 and for mutation rates
with values of 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, and 0.13.

The number of input connections n,, for each node is two and the number of program output connections 7, is one.
The population size for CGP equals five in all our experiments. For CGP individual selection we use a (1 + 4)-ES in
which offspring are favored over parents when they have a fitness better than or equal to the fitness of the parent. The
mutation operator is one-point mutation where the mutation point is chosen with a fixed probability. The number of
genes mutated is defined as fixed percentage of the total number of genes. Note, the single output gene is not mutated
and is taken from the last node in the genotype. The genes chosen for mutation might be a node representing an input
connection or a function.



5.6. Representations

Recall, there are several unique representations of a Boolean function. GA and ES represent the individuals as
strings of bits whose values define the TT of the Boolean function. GP uses a representation where individuals are
trees of Boolean primitives which are then evaluated according to the TT they produce. For CGP solutions are directed
graphs that are also evaluated in accordance to the TT they produce.

5.7. Common Parameters

The following parameters of the experiments are common for every objective. The size of Boolean function is
eight (the size of the truth table is 256) and the number of independent trials M for each experiment is 50. Stopping
criterion for all algorithms is 500 000 evaluations. One can argue that 500 000 evaluations is insufficient, but our
previous results [27, 28] as well as the results presented here show it is enough to reach optimal values. Naturally,
allowing more evaluations can only improve the results so we additionally present the results for all fitness functions
and best performing algorithm combinations with 2 500 000 evaluations.

6. Results

In all experiments, we follow the same guidelines when presenting results. We give statistics related with the
average fitness value for each of the algorithms and objectives. That average value is calculated as the mean value
of the best obtained values over all independent experimental runs. However, that is not enough due to a fact that
an algorithm can reach a high average fitness value, but still not be able to find optimal value. Therefore, we give
statistics related to the number of times that the algorithm obtains the best possible value, which is either the global
optimum or the best obtained value over all algorithms. In the cases where an algorithm could not find any global
optimum, we skip such statistics.

For all algorithms, we run a parameter sweep of two parameters we consider to play a crucial role in their effi-
ciency. Naturally, some other choice of parameter (or parameter sizes) could drastically change the results. However,
since adding the potential third parameter of interest would significantly increase the number of combinations, we
choose fixed settings for the other parameters. Some future work could investigate the influence of other parameters
in the algorithm behavior. When presenting heatmap figures, in the cases when there exists a single best average
solution, we show it enclosed in a rectangular for better visibility.

6.1. The First Objective

Recall that we set for each objective a fitness function where we a priori know what the global optimum value is.
For the first objective as presented in Eq. (11), it is easy to check that the maximal value is 120 for a function with
eight inputs (see Eq. (9)). Furthermore, as already said, the space of bent Boolean functions is still very large although
much smaller than the space of Boolean functions of a certain input size. Therefore, we could expect this problem to
be of moderate difficulty for EAs. With the random search algorithm, the average nonlinearity value equals 103.85
with no solutions that have maximal nonlinearity value.

6.1.1. Cartesian Genetic Programming

We present a heatmap representation of the average fitness values for CGP for all mutation rates and genotype
sizes in Figure 1. As evident, a large number of parameter combinations produce results with high average fitness
value. The highest result (119.04) is achieved for a genotype size of 1 500 and mutation rate of 13%. This translates to
44 out of 50 runs that finished with the nonlinearity of 120. In Figures 2a until 2d, we show the influence of genotype
size and mutation probability on the effectiveness of CGP.

From the figures it can be observed that the genotype size of 1 500 and mutation probability of 7% give the best
results on average. In Figure 3, we display the average number of active nodes for all mutation rates and genotype
sizes. Our results show that the average size goes from around 14 nodes to 90 nodes. The parameter combination that
achieved the best results has on average 80 active nodes.
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Figure 1: Heatmap of the average values for CGP, fitness function 1.
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Figure 3: Average number of active nodes for all mutation rates, fitness function 1.

6.1.2. Genetic Programming

We present a heatmap representation of the average fitness values for GP in Figure 4. Here we observe somewhat
surprising result; smaller tree depths perform much better than the larger ones. This behavior is especially obvious for
tree depths of 3 and 5 where the average fitness value equals 120. This means that the GP in all 50 independent runs
found global optimum. Therefore, the first objective seems to be very easy problem for GP with small tree depths.
However, a more detailed analysis of the solutions reveals that the situation is less straightforward. With a tree depth
of 3, all solutions are extremely short (average tree size is 17.8) and it can be observed that many of the solutions are
repeated. Furthermore, a number of solutions when translated in a TT form exhibits long runs of same digits.
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Figure 4: Heatmap of the average values for GP, fitness function 1.

In Figures 5a until 5d, we display the influence of the population size and tree depth on the algorithm effectiveness.
From the results, it is apparent that the population size does not have a large influence while the tree depth influences
the algorithm results dramatically. Even when disregarding the smallest tree depths we see that for this problem
smaller tree depths behave favorably. As an example, we note that when having tree depth of 11, most of the solutions
reach tree size of several thousand while having relatively low nonlinearity value.
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6.1.3. Genetic Algorithm

After the previous two algorithms that perform extremely well on the first objective, we come to the first algorithm
(a GA) for which this problem can be regarded difficult. In Figure 6 we see that GA reaches average fitness values
between 112 and 115. The best average score has the algorithm variation with 0.9 mutation rate and population size
of only 50 where the average value is 114.24. This can be explained by the fact that the algorithm simply needs more
evaluations to reach good values. Furthermore, since the population size is directly proportional to the number of
evaluations the algorithm does not have enough time to converge.

In Figures 7a and 7b, we observe the algorithm behavior for different mutation probabilities and population sizes,
respectively. We see that the best results on average are for high mutation probabilities. When examining the influence
of the population size on the algorithm effectiveness, we observe that larger population sizes have less diversity, which
indicates that most of the solutions get stuck in local optima. Furthermore, the biggest population sizes perform the
worst due to the lack of time (evaluations) to converge. These results are in accordance with those from [15] where the
authors also found that GA performance worsens with the population growth. We emphasize that no combination of
parameters resulted in reaching the optimal value and therefore we do not present graphs showing number of optimal
solutions found.
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6.1.4. Evolution Strategy

As evident from the Figure 8, the effectiveness of ES is similar to that of GA. The best average fitness value of 114
is reached for the two biggest parent population sizes - 200 and 500 individuals, regardless of the offspring population
size.

Figures 9a and 9b display the influence of offspring and parent population sizes on the average fitness value. We
see from the figures that the offspring population size does not have importance while the parent population size
influences the algorithm effectiveness drastically. As with the GA, there are no parameter combinations that result in
reaching a global optimum.

There could be some doubt whether the parameters are chosen smartly (i.e. could we chose better parameter
ranges). However, since this is the first time, as far as the authors know, that the ES is used in order to evolve bent
Boolean functions, these results should be regarded as the basic guideline for some future work.
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6.1.5. Best Algorithms for the First Objective - Long Run

In this section, we compare best performing algorithm configurations when setting the number of evaluations to
2500 000. Here, we experiment with CGP with genotype size of 1500 and mutation rate of 13%, GP with tree size 3
and population size 50, GA with mutation probability 9% and population size 50, and finally, ES with offspring size
10 and parent size 100. For GP and ES cases we determined the optimal parameter combination as the smallest (and
therefore computationally easiest) of those that reached the maximum value for certain algorithm. For CGP and GA,
we simply use the one algorithm combination that obtained the best results. In Figure 10, we display convergence of
algorithms during the evolution process. Since for the GP case already 500 000 evaluations were enough to reach the
optimal value for all runs, there are no further improvement there. For CGP we observe slight increase in the average
value, but still in several runs the algorithm cannot reach global optimum. For both GA and ES, we see there is no
improvement in the average value with the increase of the number of evaluations.

6.1.6. Discussion - The First Objective
How hard is to evolve bent Boolean functions? This naturally depends on the size of Boolean function and the
algorithm we use. We see that CGP and GP perform well for functions with 8 inputs. If we consider all parameter
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options, we see that GP is better than the CGP. However, if we compare our results with the results from Hrbacek and
Dvorak [25], we see that CGP can reach 100% success as GP did here, but it requires more evaluations. Hrbacek and
Dvorak give the results based on the synthesis time so it is hard to make direct comparisons due to the differences in
algorithms and their configurations as well as the hardware configuration.

GA and ES perform much worse on average, even not being able to find any optimal solution. One can observe
in Figure 7a that the performance of GA improves with the increase of the mutation rate. The results for GP and GA
are in accordance with the results from [26]. There, we also experiment with a smaller size of bent Boolean function
(six inputs) where we see that finding a global optimum is much easier for smaller function sizes. As a future work,
it would be interesting to see how far can we go in the evolution of bent Boolean functions. For now, Hrbacek and
Dvorak went up to 16 inputs [25], but there remains the question: is that the maximum for the EAs? We believe it is
not, since they achieved 100% success. Naturally, larger sizes would require even further improvements/optimizations
in the parameter settings.

A second interesting research avenue could be examining the structure of evolved bent Boolean functions; more
precisely, to investigate whether it is possible to use EAs to evolve bent functions that are not normal. A bent Boolean
function with 2n inputs is called normal if it is constant on an n-dimensional affine subspace [54]. Since until now no
one has been able to find non normal bent functions of n < 10 [55] and weakly normal bent functions of n < 10 [56],
this could also potentially lead to new, undiscovered bent functions. Therefore, experiments examining whether some
of the evolved functions are non normal or weakly normal would be of high interest and would also help to determine
which EAs find “more random” bent functions.

6.2. The Second Objective

In the second objective, we looked for balanced Boolean functions with eight inputs that have 118 nonlinearity.
Unfortunately, we were not able to find any function with that nonlinearity value. Thus, finding such a function is
still an open question. We note that although theory supports the existence of those functions [40], there also exists
an opinion in the cryptographic community that there exist no balanced functions with 8 inputs and 118 nonlinearity.
If that is true, then the upper bound given in Eq. (12) is not strict. In accordance to the fact that we could not find
Boolean functions with 118 nonlinearity, we concentrate on the next best attainable nonlinearity - 116. Therefore, in
the presented statistics we show the effectiveness of the algorithms when generating balanced Boolean functions with
116 nonlinearity. After experiments with random search, we observe that the average fitness equals 104.51 with no
solutions that have 116 nonlinearity values.

6.2.1. Cartesian Genetic Programming

In the second objective CGP outperforms all the other algorithms by far. The best average value is reached for a
parameter combination of 1500 genotype size and mutation probability of 13% and it amounts to 116.16. Recall that
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the fitness function is the sum of balancedness and nonlinearity so the maximum fitness value is larger by 1 than the
targeted nonlinearity value. We present averaged results in Figure 11.
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Figure 11: Heatmap of the average values for CGP algorithm, fitness function 2.

Figure 12 displays the average number of active nodes for all mutation rates and genotype sizes. Similar to the first
fitness function, we observe a linear increase in the average number of nodes with the increase in the genotype size.
The best parameter combination has on average 79 active nodes. In Figures 13a until 13d, we display the effectiveness
of CGP relative to the genotype size and mutation probability, respectively. We observe that CGP performs similarly
for all genotype sizes except the smallest one (100). The best genotype size for this problem seems to be 1 500. Again,
when considering mutation probability we see that the algorithm variations perform similarly (with the exception of
the smallest mutation probability of 1%). The best mutation probabilities are on average 5% and 13%.
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Figure 12: Average number of active nodes for all mutation rates, fitness function 2.
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6.2.2. Genetic Programming

GP performs significantly worse than the CGP and it obtains the best average fitness value of 114.12 for a popu-
lation size of 10000 and tree depth of seven. In Figure 14, we give average fitness values for GP. This result is also in
accordance to the results presented in [26].
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Figure 14: Heatmap of the average values for GP, fitness function 2.
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We display results for the algorithm performance with respect to different tree depths and population sizes in
Figures 15a until 15d. For this problem, we can observe that the larger population sizes behave favorably when
compared to the smaller ones. A sublinear increase can be observed in the algorithm efficiency with increase in
population size. When considering tree depths, we see that a value of seven seems to be the optimal choice out of
those tested.
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Figure 15: Population size and tree depth dependency, GP, fitness function 2.

6.2.3. Genetic Algorithm

When considering average fitness value for GA we observe in Figure 16 that the best average fitness value is
115.08 for a population size of 100 and mutation probability of 0.9. Furthermore, a combination of population size 50
and mutation probability 0.9 gives only a slight worse result with an average fitness value of 115. We note that both
of those values are better than the best average values for GP.

Figures 17a and 17b display fitness value for different mutation probabilities and population sizes. The two best
performing variations also succeed in finding several balanced solutions with nonlinearity 116. Namely, the variation
with the population size 50 found one solution with 116 nonlinearity and the combination with population 100 found
four solutions. Nevertheless, we opted not to show graphs with the relationship of number of optimal solutions to the
algorithm performance since there are only a few such solutions. From the figures below, we see that for this problem
the GA favors small population sizes and large mutation probabilities. The observation about the better performance
of smaller population sizes is in accordance with the findings in [15].
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Figure 16: Heatmap of the average values for GA, fitness function 2.
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6.2.4. Evolution Strategy

Similarly to the first fitness function, ES performs the best for larger parent population sizes where offspring
population size has a small influence. In Figure 18, we see that the best average fitness value is obtained for the
parent size of 500 and offspring size of 10 and that value equals 113.32. As is the case with the first objective, ES is
the worst out of the four examined EAs. We give the algorithm effectiveness for various offspring and parent sizes
in Figures 19a and 19b, respectively. The graphs show virtually no effect caused by the number of offspring and no
effect caused by parent size except for two smallest parent sizes which perform significantly worse. From the results,
we can also observe that there is little (or none) diversity in final solutions of independent runs. This indicates that the

ES is stuck in some local optimum value.
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Figure 19: Offspring and parent population sizes dependency, ES, fitness function 2.

6.2.5. Best Algorithms for the Second Objective - Long Run

As the best performing algorithms for the second objective, we use CGP with genotype size 1 500 and mutation
rate 13%, GP with tree depth 7 and population size 10000, GA with population size 100 and individual mutation
probability 90%, and ES with parent size 500 and offspring size 10. We display the results for 50 runs and 2 500 000
evaluations in Figure 20. It is easy to see that the biggest winner is GP since it benefits the most from additional
evaluations. The average value after 500 000 evaluations was 114.12 and now after 2 500 000 is 116.68. CGP improves
only slightly, from 116.16 to 116.32 and finally, GA and ES do not benefit at all from the additional evaluations.

6.2.6. Discussion - The Second Objective

Finding highly nonlinear balanced Boolean functions with eight inputs is at the same time easy and difficult. It
all depends what one considers high nonlinearity. In the case that 112 or 114 represent sufficiently high nonlinearity
value, it seems that all of the evaluated algorithms could be used (granted, with more or less success). However, if
we want to reach the nonlinearity of 116 the situation starts to change. Immediately ES and even GA do not pose
a viable choice. When comparing averaged results for GP and GA, we observe that the GA reaches higher value
(115.08) than the GP (114.12). We observe that GA finds 116 nonlinearity only rarely, but ends in most of the cases
with the nonlinearity 114. On the other hand, GP often reaches 116 nonlinearity, but also gets stuck with nonlinearity
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Figure 20: Long run for the best performing algorithms, fitness function 2.

of only 112. When counting the number of times that the algorithm reached 116 nonlinearity, CGP performs by far
the best. However, finding nonlinearity value of 118 seems to be impossible with algorithms like these (that is, in the
case that such a function exists), especially without any improvements like adding hill climbing or seeding the initial
population.

As evident from [26], seeding population with good solutions and running hill climbing (two-stage search) im-
proves drastically the behavior of GP. It would be interesting to check what happens with CGP when coupled with
those improvements. When considering CGP we also see that the fitness function as given in Eq. (14) outperforms
two-stage fitness function that is often used in CGP. This is a surprising result since that is often used in CGP, ever
since it was first described [52, 3]. This implies that more work should be done on a variety of problems to establish
the relative merits of the two approaches. In addition, in [53] it was suggested that optimal mutation rates should
decrease as genotype length increases. However, the results here confirm the findings from [27] that for the crypto-
graphic problem we study this is not the case. Indeed fairly high mutation rates produce the best results. This is also
surprising and merits further investigation.

Looking on a more general level, algorithms with tree and graph representations outperform algorithms with the
TT representation significantly. It would be beneficial to study why TT representation performs worse. One possible
explanation is that there exist value and variable symmetries [57, 58]. One interesting research avenue is to check
the fitness landscapes of Boolean functions with different nonlinearities [59]. Additionally, experiments with different
representations (e.g. the Walsh-Hadamard transform) could provide insights in the problem behavior.

6.3. The Third Objective

This is the shortest section due to a fact that ES and GA are not able to find any balanced function with the
correlation immunity equal to two. In fact, only sporadically those two algorithms are able even to find a balanced
Boolean function with the correlation immunity that equals one. Random search (similarly to GA and ES) is not
able to find any solutions that have correlation immunity equal to two. Naturally, the conclusions apply with a fitness
function we chose to use. Therefore, in this section we give results only for CGP and GP.

6.3.1. Cartesian Genetic Programming

Figure 21 gives the heatmap representation where the best average fitness value equals to 119.26. This is obtained
for the genotype size of 1700 and mutation probability of 11%. We note that very similar average value of 119.24
is achieved for genotype size of 1500 and mutation probability of 7%. Unlike the first two objectives, we can also
observe there are a number of results where CGP is not able even to reach some high (e.g. more than 100) nonlinearity
value. This points us to a fact that CGP often needs many evaluations just to find a solution that has correlation
immunity equal to two and therefore it does not have enough time to converge to higher nonlinearity values.
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Figure 21: Heatmap of the average values for CGP, fitness function 3.

Figure 22 shows the average number of active nodes for fitness function 3. The best parameter combination has
the average length of 81.5 active nodes.
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Figure 22: Average number of active nodes for all mutation rates, fitness function 3.

When addressing the algorithm performance with respect to the genotype size or mutation probability we display
the corresponding graphs in Figures 23a to 23d. We observe that the best genotype size is 1 500 and by far the worst
one is 100. Furthermore, we see that the mutation probability does not affect significantly average fitness value while
the probability of 5% gives the highest number of best obtained values. These results suggest that the algorithm
performs well, but just does not have enough time to converge (another possibility is that it is stuck in some local
optima).
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Figure 23: Mutation probability and genotype size dependency, CGP, fitness function 3.

6.3.2. Genetic Programming
Finally, we present results for GP and fitness function 3. In Figure 24, we see that the highest average fitness value

is 121.3 which is achieved for the population of 10000 and a tree depth 7.
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Figure 24: Heatmap of the average values for GP, fitness function 3.
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Figures 25a until 25d give average fitness value and the number of optimal solutions for each genotype size and
tree depth. From the results we see that population sizes of 5000 and 10000 reach very high average fitness values
while populations 2 000 and 5 000 give higher number of optimal solutions. Medium sized tree depths (approximately
seven to nine) perform the best.
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Figure 25: Population size and tree depth dependency, GP, fitness function 3.

6.3.3. Best Algorithms for the Third Objective - Long Run

For the third objective and long run, we experiment with CGP with genotype size 1 700 and mutation rate 11%
and GP with the population of 10000 and a tree depth of 7. Since both GA and ES were unable to find any correct
solution with 500 000 evaluations, we estimate appropriate values on the basis of the results from the first two objec-
tive. In accordance with that, we investigate the performance of GA with population of 100 and individual mutation
probability of 90% and ES with parent size of 500 and offspring size of 10. However, even those extra evaluations did
not help GA and ES to evolve any solutions that are balanced and with correlation immunity equal to 2. Therefore,
we do not display results for those two algorithms in Figure 26, but only the results for GP and CGP. Similarly as in
the second objective, the GP profits more where it improves the average fitness value from 121.3 to 123.36. On the
other hand, CGP did not profit from additional evaluations and its average fitness value changed only marginally.

6.3.4. Discussion - The Third Objective

After comparing all the results, it appears that the fitness function three is the most difficult one to solve. This
is especially apparent with CGP where we observe that with some genotype lengths CGP has difficulties to evolve
optimal solutions in “only” 500 000 evaluations. However, we note that both GP and CGP are able to find balanced
Boolean functions with nonlinearity equal to 112, algebraic immunity 4, algebraic degree 5, and correlation immunity
2 and therefore reach the global optimum. Furthermore, we observe that by increasing the number of evaluations, GP
profits more.

A fitness function as given in Eq. (18) could have been written differently. Since we know that we want to obtain
the nonlinearity value of 112, we could have set that condition in the delta function we use. However, that option

25



90 100 110 120
I I |

Fitness value

80
I

t Algorithms
4 — CGP

GP

70

T T T T T
0 500000 1000000 1500000 2000000 2500000
Number of evaluations

Figure 26: Long run for the best performing algorithms, fitness function 3.

seems to bring some undesired consequences. All our experiments show that it is much easier to evolve Boolean
function with high algebraic degree (recall Eq. (15) where the algebraic degree and the correlation immunity are
conflicting properties). Indeed, if experiments do not specify the correlation immunity value, the results show that all
algorithms tend to evolve solutions with the algebraic degree equal to seven and the correlation immunity equal to
zero [9]. In some cases, GP and CGP find functions with the algebraic degree value that equals six and the correlation
immunity equal to one.

Therefore, in the case when in the delta function is the nonlinearity condition, we believe that an additional
constraint should be put on the algebraic degree property in order not to allow it to step over a certain threshold value.
By doing so, we force algorithm to look for functions with the maximum correlation immunity values considering the
Siegenthaler inequality.

As a future work it would be interesting to evolve Boolean functions for each correlation immunity value that
still ensures large enough algebraic degree value (for a Boolean function of eight inputs that would constitute the
correlation immunity values from zero to four [12]). Naturally, there have been previous works on the evolution
of Boolean functions with a certain correlation immunity values (i.e. resilient Boolean functions) as enumerated in
Section 2. Still, we believe there is a certain lack of methodicalness in those works since the correlation immunity is
often either not of primary interest or the researchers are interested in the correlation immunity with values up to two
(for Boolean functions with eight inputs).

7. Conclusions

In this paper, we present how to use EAs to evolve cryptographically suitable Boolean functions. We concentrate
on three fitness functions and we compare four EAs and as a baseline case random search.

In all the cases, GP and CGP perform the best, which indicate that the TT representation is not the most appropriate
one when evolving cryptographically suitable Boolean functions. Naturally, that observation is valid with fitness
functions we used in the experiments. We also show that for these fitness functions and algorithm configurations,
500 000 evaluations presents a reasonable stopping criterion. We can observe certain improvements with additional
evaluations, but only in the GP case that improvement could justify significantly longer running time. We give a
short discussion for each of the fitness functions where we also note some possible research avenues. Since here we
consider only functions of eight inputs, one natural research avenue would be to work with larger sizes (this applies for
all fitness functions we investigate in this paper). Another option is to experiment with other unique representations
of Boolean functions (e.g. Walsh-Hadamard transform).

As evident from the Section 2, this is one extremely well researched area when considering the total number of
applications of EC to cryptology-related problems. However, we still believe there is much room for improvement,
especially in the systemization of current knowledge.
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