
Solving Exam Timetabling Using Distributed Evolutionary Computation

Mihej Komar, Dorde Grbic, Marko Cupic
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Unska 3, 10000 Zagreb, Croatia
E-mail: {mihej.komar, dorde.grbic, marko.cupic}@fer.hr

Abstract. In this paper we describe specific
exam timetabling problem encountered at our
institution. We enumerate and briefly explain
population based evolutionary computation
algorithms that we implemented and then focus
on coarse-grained algorithm parallelization.
Parallelization is accomplished by employing a
computer network in which separate populations
exchange best solutions. Solution exchange
is guided by various migration parameters
such as network exchange topology. Proposed
topologies are tested and experimental results
are discussed. We conclude that usage of a
computer network, exchange topologies, and
large amount of processor time enabled us to
find a good-quality exam timetable.

Keywords. Exam timetabling, evolutionary
computation, distributed algorithms

1. Introduction

Exam-timetabling is one of several
timetabling problems present at each uni-
versity. This problem is a combinatorial
optimization problem and it is considered to be
NP-complete [8]. There are many variations
of this problem. In this paper we focus on a
problem in which a set of courses should be
scheduled in a predetermined set of timeslots.
More than one course can be assigned to a
single timeslot, up to timeslot capacity. A
single course can be assigned only to a single
timeslot. In order to produce a good-quality
timetable, a number of additional constraints
should also be satisfied. The goal is to make the
exam timetable at least as good as experienced
human would make it. Early attempts to solve
this problem used heuristic algorithms such as
graph coloring heuristic methods [12] in which
courses were represented by nodes and timeslots
were represented by node colors. Although

those algorithms are efficient in solving small
timetabling problems, they are mostly not
efficient for larger problem instances [1].

Later attempts used meta-heuristic algorithms
in attempt to solve timetabling problems. Meta-
heuristic algorithms are a group of generic algo-
rithms capable of solving large variety of prob-
lems that cannot be solved in a polynomial time
using exact search methods [11]. Meta-heuristic
algorithms can be divided in two groups: single-
solution based algorithms and population-based
algorithms. The former start with a single solu-
tion that is then iteratively modified in an attempt
to satisfy given constraints, until globally optimal
solution is reached. Drawback of these methods
is that they usually get stuck in the local optimal
solution and are unable to find better solutions in
other parts of the search space. Population-based
algorithms use multiple solutions at the same
time (called a population). These algorithms try
to cover a larger area of the search space in par-
allel thus increasing the possibility of finding op-
timal or nearly optimal solution. The drawback
of these algorithms is that they are mostly con-
centrated on exploration and are often unable to
thoroughly exploit the population neighborhood
in the search space.

Finding optimal parameters for such algo-
rithms is an additional problem. Inappropriate
choice of the parameters can either lead to pre-
mature convergence of population towards lo-
cally optimal solution or make the algorithm
spend too much time in finding optimal solu-
tion. The problem of parameter selection, al-
though important, will not be discussed in this
paper. To amend this, we complemented the de-
veloped population based algorithms with a sim-
ple local-search procedure. Population-based al-
gorithms used in this paper are: Steady-state Ge-
netic Algorithm, Generation Genetic Algorithm,
Harmony Search, Simple Immune Algorithm,
and MAX -MIN Ant System.

301
Proceedings of the ITI 2011 33rd Int. Conf. on Information Technology Interfaces, June 27-30, 2011, Cavtat, Croatia

Parallelization is another approach often used
when dealing with hard optimization problems.
Because of the out-of-the-box multi-core com-
puter processors and large computer networks are
available in university environment, it is possible
to deploy a large set of parallel meta-heuristic al-
gorithms. The idea is that algorithms could do
better if every algorithm instance creates its own
population, tries to improve it and exchanges
best solutions with other algorithms in the net-
work. Solution exchange policy is determined
by a topology specified before the algorithms
started.

To deal with exam timetabling problem
present at out institution, we have developed a
Java-based framework. It offers a support for a
distributed execution of multiple heterogeneous
evolutionary computation algorithms. We imple-
mented several evolutionary computation based
algorithms. Using these sequential algorithms as
a simple building blocks, we tested the behavior
of resulting distributed algorithm on actual prob-
lem instance.

In this paper several topologies are tested and
results are discussed. In the next two sections
University Exam Timetabling Problem and ap-
plied meta-heuristic algorithms will be explained
in more details. Section 4 gives the description
of topologies that were tested in this study. Sec-
tion 5 discusses experimental results and Section
6 concludes the paper.

2. Exam Timetabling Problem

Exam timetabling problem is a well-known
NP-complete combinatorial problem present in
colleges and universities with a large number of
students and courses, especially if many courses
are elective. The problem is how to efficiently as-
sign timeslots to courses in presence of additional
constraints. There are two types of constraints:
hard and soft constraints. Hard constraints are
those whose violation makes the timetable infea-
sible. On the other hand, soft constraints can be
violated, but their violation should be reduced to
a minimum. The problem described in this pa-
per is the one we face at our institution. The
difference from similar problems is in the choice
of soft constraints and the evaluation method of
timetable quality.

The exam timetabling problem can be de-
scribed as follows. It has a fixed duration (e.g.,
two weeks) and the timeslots are defined in ad-
vance, without overlapping. The students are di-
vided into several modules, where some mod-
ules have a lot of enrolled students and some
have only a few. Different modules can have
overlapping set of mandatory courses. During
the scheduling process, perceived course diffi-
culty, later denoted as course weight, must also
be taken into account. We collect these weights
using an anonymous poll. Time distance between
more difficult courses and those sharing a lot of
enrolled students should be as large as possible.
However, it is more important to satisfy this re-
quirement for courses belonging to same mod-
ules and for courses offered on the same year.
The latter two constraints constitute soft con-
straints. Hard constraints are defined as follows:
(i) no two courses sharing at least one enrolled
student can be assigned to the same timeslot, and
(ii) the total number of students in courses as-
signed to each timeslot must not exceed the pre-
defined timeslot capacity. The problem of assign-
ing exam rooms to each course once the timeslots
are assigned is handled separately [13] and will
not be described here.

The exam timetabling problem we tackled can
be semi-formally defined as follows. We define
a set of courses as C = {c1, . . . , cnC

}, set of
timeslots as T = {t1, . . . , tnT

}, and the set of
students as S = {s1, . . . , snS

}. Let Pa denote a
set of all course pairs that share at least one en-
rolled student. We define a set P = {(cj , ck)} as
the largest subset of Pa, where courses cj and ck

are both mandatory on same module. We define
functions cPenalty , tPenalty , and dPenalty .
Function cPenalty(ci, cj) represents a penalty
between the courses ci and cj placed close to-
gether in the time (the penalty is higher for the
courses which have greater weight and have a
larger number of enrolled students). Function
tPenalty(tx, ty) returns the penalty between the
timeslots tx and ty. Function dPenalty(dcx , dcy)
returns the additional penalty that is applied to
the pairs of courses (cx, cy) belonging to the
same module.

Function cPenalty(ci, cj) is defined as a sum
of penalties calculated for each student enrolled
in both courses. Each student can increase the

302

penalty value by 1 (if both courses are in stu-
dent’s regular module), by 0.5 (if both courses
belong to the same academic year the student is
currently enrolled, but one or both of them are
not a part of the module), by 0.25 (if one course
is a part of the academic year the student is cur-
rently enrolled, but the other one is not), or by
0.125 otherwise. To obtain the final value, this
sum is then multiplied by min(wi, wj) where wk

denotes the weight of course ck.
The function tPenalty(tx, ty) is a monotoni-

cally decreasing, defined by:

tPenalty(tx, ty) = α1−
distance(tx,ty)

24 (1)

where distance(tx, ty) denotes a distance be-
tween the timeslots, expressed in hours.

The function dPenalty(dcx , dcy) is monoton-
ically decreasing function defined as:

dPenalty(dcx , dcy) =

⎧⎨
⎩

200, Δ = 0
100, Δ = 1
d(Δ), Δ ≥ 2

(2)

where

d(Δ) =
60

1 + exp ((0.2 · Δ)3)
. (3)

This function is calculated only for the pairs of
courses (cx, cy) from set P . The value Δ rep-
resents the distance between the days in which
courses cx and cy are scheduled. Value dci

repre-
sents the day in which a course ci is scheduled.

The penalty of a timetable, denoted p, is the
measure of soft constraints violation. It has two
contributors p1 and p2:

p = p1 + p2. (4)

The penalty p1 is defined as:

p1 =
∑

(cx,cy)∈P

dPenalty(dcx , dcy), (5)

while the penalty p2 between all timeslots is cal-
culated by:

p2 =

nT−1∑
i=1

nT∑
j=i+1

tPenalty(ti, tj) · r(ti, tj) (6)

and

r(ti, tj) =
∑

ck∈c(ti)

∑
cl∈c(tj)

cPenalty(ck, cl) (7)

where function c(ti) returns a set of courses that
are assigned to the timeslot ti.

All constants used in equations (1), (2), and
(3) are appropriate for the problem instance we
had to solve, and are obtained by trial-and-error
attempts. In our experiments, we choose α = 7.
For other problem instances, we suggest the same
function shape as defined by equations (1), (2),
and (3) but the specific constant values can be
adjusted to the problem at hand.

3. Evolutionary Computation Applied
on Timetabling

In this section we briefly describe meta-
heuristic algorithms we used to solve exam the
timetabling problem defined in Section 2.

Genetic Algorithms are a part of meta-
heuristic algorithms inspired by biological evo-
lution by means of natural selection [6]. They
are population-based algorithms that use several
genetic operators to improve solutions in popula-
tion. Operators such as selection, crossover, and
mutation are used in order to produce new solu-
tions. There are several different selection op-
erators [4]. In our implementation 3-tournament
parent selection is used. When solutions are se-
lected, crossover operator recombines the two se-
lected timetables and creates a new solution. It is
expected for a new solution to be somewhere in
between the two parent solutions in the search
space. If the crossover operator would be the
only operator used for search, a premature con-
vergence would occur. To amend this, a muta-
tion operator is introduced. Mutation takes a so-
lution and randomly changes some parts of the
timetable. We implemented two genetic algo-
rithms: Steady-state and Generation Genetic Al-
gorithm. Steady-state algorithm operates with
a relatively stable population. When a new so-
lution is created it replaces the worst solution
in current population thus keeping the popula-
tion size constant. Generation Genetic Algorithm
produces a complete new generation before dis-
carding the old one. Solutions from old gener-
ation are used as parents, and the best parent is
copied into the new generation in order to imple-
ment elitist strategy.

Harmony search [9] algorithm is a population
based algorithm sharing some similarities with

303

Genetic algorithms. This algorithm was derived
from the natural phenomena of musicians behav-
ior when they collectively play their musical in-
struments to come up with the aesthetically ap-
pealing harmony. This aesthetics is represented
by evaluation function of produced timetables.
More detailed description of Harmony Search
Algorithm can be found in [1].

Simple Immune Algorithm [5, 10] is an algo-
rithm inspired by mammal immune system. The
algorithm maintains a population of antibodies
(timetables) that are subjected to expansion pro-
cess in each iteration of the algorithm. The ex-
pansion process includes the cloning of timeta-
bles and the application of a hyper-mutation op-
erator. The cloning operator duplicates entire
population a predefined number of times. The
hyper-mutation then attempts to change a times-
lot assigned to each course in accordance with
predetermined probability.

MAX -MIN Ant System (MMAS) [7]
uses a set of virtual agents, called artificial ants,
to find good solutions. To apply MMAS, prob-
lem has to be transformed into a problem of find-
ing shortest path on a weighted graph. The ants
incrementally build solutions by stochastically
moving on the graph. Movement toward good
solution is biased using artificial pheromone that
the ants deposit during their graph movement.
Amount of deposited artificial pheromone is pro-
portional to the quality of the solution.

4. Distributing Evolutionary Computa-
tion Algorithms

The trend of parallelization in computing is
becoming more important. Concerning the fact
that CPU clock is not increasing as before, keep-
ing the rate of performance growth is achieved by
integration of more cores within a single CPU.
Besides parallelization on a single computer, us-
ing a cluster of computers for solving problems
is also common. Some meta-heuristic algorithms
are very appropriate for parallelization. Paral-
lelization of meta-heuristic algorithms can in-
crease the speed of execution and modify the be-
havior of meta-heuristics, which can in turn raise
the quality of achieved results [2, 3].

This paper describes coarse-grained paral-
lelization. Coarse-grained parallelization im-

plies the usage of several populations that oc-
casionally exchange solutions. Each popula-
tion can potentially search a different part of the
search space, thus more separated populations
can search wider areas of the search space. Oc-
casional exchange of solutions from different ar-
eas of search space can allow good solution parts
to combine, and can steer the search process to-
wards the global optimum.

Each of the evolutionary computation algo-
rithm has its advantages and disadvantages. It
is expected that the disadvantages of some algo-
rithms can be compensated by cooperation with
other algorithms.

In order to specify a distributed algorithm,
we must define its topology and migration pa-
rameters. The migration parameters are follow-
ing: which solution to migrate, when to perform
the migration, and the method for integration of
the received solution into the population. There
are many different topologies and some of them
are shown on Figure 1. The ring topology can
be unidirectional or bidirectional. In the exper-
iment described in Section 5 we use the unidi-
rectional type of the ring. Populations inside a
single island (shadowed regions on Figure 1-b)
rapidly exchange solutions, but islands mutually
exchange solutions at a much slower rate. The
idea behind this topology is that the algorithms
working with populations inside a single island
are exploring only one part of the search space.
With the occasional exchange of solutions be-
tween islands, we are trying to combine the good
parts of solutions from different islands. The
toroidal grid is a 2D grid, where upper and lower
rows, as well as leftmost and rightmost columns,
are connected. Edges can be unidirectional (e.g.,
direction of solution’s movement is from right-
to-left and up-to-down) or bidirectional. In our
experiments we use the bidirectional type of the
toroidal grid. In the binary tree topology connec-
tions are directed upwards. The leaves of the tree
are entirely independent. Nodes in every upper
layer of the tree combine the solutions received
from their children. The root node integrates all
populations and receives the solutions from all of
the explored areas of the search space.

A Java-based framework was developed for
solving exam timetabling problem in a dis-
tributed manner. The framework can be used to

304

(a) (b)

(c) (d)

Figure 1. Examples of topology: (a) ring, (b)
islands, (c) toroidal grid, and (d) binary tree.

create a distributed parallel algorithm composed
of many sequential evolutionary computation al-
gorithms. The user of the framework can accom-
plish this parallelization without being concerned
with single algorithm parallelization issues. The
framework takes the responsibility for transport-
ing the solutions between algorithm instances;
however, selection of solutions to be transported
and the integration policy is left to the algorithms
themselves. A framework can be easily adapted
for solving other problems. It is designed to take
care of communication between algorithms, to
collect statistics, results, and other relevant infor-
mation.

5. Experimental Results and Discussion

In order to test the algorithms and the distri-
bution framework, we performed several exper-
iments. Experiments were carried out on com-
puters with quad-core Intel Core 2 CPU and 4
GiB of RAM, so every computer was able to ex-
ecute up to four algorithms. We performed sev-
eral experiments using different topologies: bi-
nary tree topology used 15 and ring, islands, and
toroidal grid topology used 16 algorithms. For
each topology we used four computers (one algo-
rithm per a single processor core). Migration was
performed at constant intervals of one or five sec-
onds. In the island topology, migration between
islands was performed four times slower then mi-
gration within islands. The best individual from

Table 1. The results for different topologies.

Topology Average penalty Min. penalty

Migration takes place every 5 seconds
Ring 4072.3± 59.2 3992.2
Islands 4100.0± 69.8 3962.2
Toroidal grid 4077.0± 61.6 3955.3
Binary tree 4087.5± 51.6 4003.4

Migration takes place every 1 second
Ring 4096.0± 68.4 3980.1
Islands 4107.4± 63.5 3993.5

No migration
Unconnected 4083.9± 35.9 4000.6

the current population was chosen as the migrat-
ing solution. To obtain average results, each ex-
periment was repeated 20 times.

The distributed algorithm execution was
stopped when there was no progress during a pe-
riod of 10 minutes in all sequential algorithm
instances, i.e., no better solutions were found.
The specific problem we experimented with was
exam timetabling for the winter semester of the
academic year 2010/2011 at our institution. The
problem we solved was comprised of 135 courses
with a total of 3455 students, which needed to be
scheduled in 40 timeslots during a 10 day period.
Each timeslot had capacity of 800 students and
the number of exam taking was 17241, so the av-
erage occupancy was 54%.

The results of experiments are presented in
Table 1. All obtained solutions satisfied hard
constraints: there were no students scheduled to
more than one exam at the same time, and there
were no overcapacitated timeslots. The solutions
only differed by the achieved quality as defined
by (4) (see column 2 of the Table 1). It may be
noted that the ring topology achieved the lowest
average value of the penalty function, but these
results must be taken with care because of the
moderately large deviation. For a better com-
parison, it should be noted that repeatedly run-
ning a single algorithm until the 10-minute con-
vergence period resulted with average quality of
4453.6 ± 295.8. Comparison of topologies by
best solution over time is shown in Figure 2.

The time needed for convergence by different
migration parameters is shown in Table 2. The
fastest convergence was achieved by ring topol-
ogy. It is encouraging that these results are the
results with the smallest deviation.

305

0 5 10 15 20 25 30
4050

4100

4150

4200

4250

4300

Time (min)

P
en

al
ty

Ring
Islands
Toroidal grid
Binary tree
Unconnected

Figure 2. Average best solution by time for
different topologies. Migration takes place
every 5 seconds.

Table 2. The time needed for algorithms to
converge (in minutes).

Topology Average time Best time

Migration takes place every 5 seconds
Ring 9:31 ± 6:35 2:58
Islands 15:15 ± 8:04 3:51
Toroidal grid 12:50 ± 12:00 3:23
Binary tree 14:26 ± 7:26 2:05

Migration takes place every 1 second
Ring 8:47 ± 6:54 1:47
Islands 10:39 ± 7:00 2:35

No migration
Unconnected 18:28± 12:46 1:57

6. Conclusion

In this paper, we describe a distributed evolu-
tionary framework for exam timetabling. Using
the evolutionary computation, good-quality solu-
tions can be found. As our experiments suggest,
creating distributed multi-algorithm environment
can produce even better results. By introducing
migration of solutions, the execution time stabil-
ity can be further improved.

Using the described distribution framework
and the developed algorithms, we were able to
find a satisfactory solutions for our institution.
However, there is still a lot of work to be done
with regard to the best topology selection and ac-
companying adequate migration parameters. For
instance, island topology performed worse than
unconnected topology which requires further in-
vestigation.

References

[1] M. Al-Betar, A. Khader, and T. Gani. A
harmony search algorithm for university
course timetabling. In In 7th Intl. Conf.
on the Practice and Theory of Automated
Timetabling. Springer Netherlands, 2008.

[2] E. Alba and M. Tomassini. Parallelism
and evolutionary algorithms. Evolution-
ary Computation, IEEE Transactions on,
6(5):443–462, 2002.

[3] E. Alba and J.M. Troya. A survey of par-
allel distributed genetic algorithms. Com-
plexity, 4(4):31–52, 1999.

[4] L.D. Davis and M. Mitchell. Handbook
of genetic algorithms. Van Nostrand Rein-
hold, 1991.

[5] L.N. De Castro and F.J. Von Zuben. The
clonal selection algorithm with engineer-
ing applications. Proc. of the Genetic and
Evolutionary Computation Conf., Las Ve-
gas, Nevada, USA, pages 36–37, 2000.

[6] K. A. De Jong. Evolutionary Computation.
The MIT Press, 2006.

[7] M. Dorigo and T. Stützle. Ant Colony Opti-
mization. The MIT Press, 2004.

[8] M.R. Garey and D.S. Johnson. Computers
and intractability. A guide to the theory of
NP-completeness. A Series of Books in the
Mathematical Sciences. WH Freeman and
Company, San Francisco, Calif, 1979.

[9] Z.W. Geem. Music-inspired harmony
search algorithm: theory and applications.
Springer, 2009.

[10] M.R. Malim, A.T. Khader, and A. Mustafa.
Artificial immune algorithms for univer-
sity timetabling. In The 6th Intl. Conf.
on the Practice and Theory of Automated
Timetabling, pages 234–245. Masaryk Uni-
versity, 2006.

[11] E.G. Talbi. Metaheuristics: From Design to
Implementation. Wiley, 2009.

[12] D. De Werra. An introduction to
timetabling. European Journal Of Opera-
tional Research, 19(2):151–162, 1985.

[13] M. Čupić, M. Golub, and D. Jakobović. Ap-
plying AI-techniques as help for faculty ad-
ministration – a case study. Central Euro-
pean Conference on Information and Intel-
ligent Systems, 2010.

306

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

