

 Int. J. Knowledge and Learning, Vol. 7, Nos. 1/2, 2011 51

 Copyright © 2011 Inderscience Enterprises Ltd.

Scheduling problems at a university: a real-world
example

Marko Čupić* and Tin Franović
Faculty of Electrical Engineering and Computing,
University of Zagreb,
Unska 3, 10000 Zagreb, Croatia
Fax: +385-1-6129653
E-mail: Marko.Cupic@fer.hr
E-mail: Tin.Franovic@fer.hr
*Corresponding author

Abstract: In this paper, we discuss the development and usage of various kinds
of educational activity schedulers used at faculty level. Problems solved by
such schedulers are of paramount importance for organisation of educational
activities during the semester. Implementations of adequate evolutionary
computation-based algorithms are being developed as part of the Ferko project.
Various parts of the Ferko project have already been used for several years by
thousands of students and faculty staff members at our institution.

Keywords: exam scheduling; laboratory scheduling; make-up scheduling;
assigning students to lecture groups.

Reference to this paper should be made as follows: Čupić, M. and Franović, T.
(2011) ‘Scheduling problems at a university: a real-world example’,
Int. J. Knowledge and Learning, Vol. 7, Nos. 1/2, pp.51–69.

Biographical notes: Marko Čupić received his MSc in 2006 at the Faculty of
Electrical Engineering and Computing, University of Zagreb, Croatia. His
current research focuses on university scheduling problems, e-learning and
knowledge assessment and various areas of artificial intelligence.

Tin Franović received his BSc in 2010 at the Faculty of Electrical Engineering
and Computing, University of Zagreb, Croatia. He is currently pursuing his
MSc in Computer Science at the same university.

This paper is a revised and expanded version of a paper entitled ‘Ferko
project – intelligent support for course management at faculty level’ presented
at the 33rd International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO 2010), Opatija, Croatia,
24–28 May 2010.

1 Introduction

When talking about the role of computers in education, today’s mainstream research
topics are focused on helping students to learn by creating various formats of learning
materials (e-learning, m-learning, intelligent tutoring systems, etc.) and helping teachers

 52 M. Čupić and T. Franović

to better assess students knowledge (e-assessment systems providing adaptive and
intelligent assessments techniques). However, even today, the majority of courses are still
being taught in classrooms, while assessments are still being conducted on-campus under
staff supervision. For all but small-sized universities, creating high-quality lecture,
assessment, and laboratory exercise schedules poses a serious challenge.

Being part of faculty administration is definitely not an easy job. This is even more so
considering all the tasks needed to be done in light of the new Bologna reform. Out of all
challenging tasks, we will single out several that are performed at faculty level: creating a
semestral lecture schedule for all courses and enabling students to exchange groups in
case of conflicting schedules, creating weekly laboratory schedules for all courses,
creating exam schedules for all courses, and supporting course staff to manage make-up
or deferred exams more easily. With regards to computational complexity, all of those
problems are combinatorial NP (i.e., non-deterministic polynomial time), and solving
them by hand – even in an attempt to obtain a best-effort quality schedule – is unfeasible.

Fortunately, adequate algorithmic techniques have been developed for dealing with
NP class combinatorial problems. Most prominent candidates are biologically inspired
meta-heuristics researched under the evolutionary computation umbrella, such as
evolutionary algorithms (e.g., genetic algorithm) (De Jong, 2006; Deb, 2009; Affenzeller
and Wagner, 2009), swarm algorithms (e.g., particle swarm optimisation and ant colony
optimisation) (Eberhart and Kennedy, 1995; Montes de Oca et al., 2009; Dorigo and
Stützle, 2004), artificial immune systems (De Castro and Von Zuben, 2000; De Castro
and Timmis, 2002; Cutello and Nicosia, 2005), and differential evolution algorithms
(Feoktistov, 2006; Price et al., 2005).

The goal of Ferko, an open-source course management and support system we are
developing, is to improve the quality of studying and to leverage faculty administration
and course staff of many of the common and tedious tasks. In this paper, we present work
carried out as part of the development of Ferko, addressing most of the above-mentioned
problems by providing intelligent optimisation methods based on evolutionary
computation algorithms, capable of automatically producing good-quality schedules. We
comment on the performance of developed algorithms, and discuss how they can be used
to provide an intelligent support for course management at faculty level.

2 Related work

The possibilities of using computers to solve scheduling problems at faculty level have
been studied extensively throughout the years. One of the first attempts at solving
scheduling problems dates back to 1959 and is attributed to Blakesley (1959).

Modern approaches to the scheduling problem usually rely heavily on evolutionary
computing and heuristics because of the NP-hardness of the task. These approaches can
be divided into several categories, depending on the algorithms used for solving the task.
One of the most popular algorithms are genetic algorithms, whose application to
scheduling problems has been studied by Adamidis, Beligiannis, Dorigo, Mamede,
Salwatch (Adamidis and Arakapis, 1997; Beligiannis et al., 2008; Colorni et al., 1990;
Mamede and Rente, 1997; Salwach, 1997) and most notably by the automated scheduling
and planning group at the University of Nottingham, UK. Memetic algorithms have also
been used, such as the ‘neeps and tatties’ (Cumming, 1997) system used at Napier
University. Other approaches include simulated annealing (Thompson and Dowsland,

 Scheduling problems at a university 53

1996), tabu search (Abdullah et al., 2006) and constraint logic programming (Kambi and
Gilbert, 1996; Gueret et al., 1995). One of the most recent approaches includes the use of
reinforcement learning in determining a suitable heuristic based on the problem presented
(Ozcan et al., 2010).

Since timetable scheduling is a big problem for educational institutions, a number of
open-source and commercial software applications have been developed in order to serve
as help with scheduling. Most of these applications, including the Ferko system, have
been developed at universities to suit their scheduling needs first, and published later on.

One of the examples of university timetabling software is the UTTS system
(Lim et al., 2000) developed at the National University of Singapore. It is a complete
solution for scheduling exams at university level and has been successfully used at a
university with more than 21,000 students. The algorithm used for the version described
in Lim et al. (2000) is the arc consistency algorithm (Mackworth, 1977) and is basically
applied to a constraint satisfaction problem. The constraints used include two hard
constraints (each student can attend just one exam at a time and the venue assigned to an
exam must be large enough to accommodate all students) and a number of soft
constraints which are used in fine-tuning of the schedule. The main drawback of the
system is that it works best if each of the faculties is computed separately, with minimal
communication, but improvements to this problem are already being researched.

Arguably, the most state-of-the-art implementation of an automatic scheduler is the
UniTime (UniTime | University Timetabling, 2010) system, the winner of the 2007
International Timetabling Competition. UniTime is a comprehensive open-source
academic timetabling solution which covers all university timetabling needs such as
course scheduling, student sectioning, examination and event scheduling. It has been
successfully applied at Purdue University, which has more than 39,000 students, 9,000
classes and 2,400 examinations which generate more than 190,000 course requests. The
underlying algorithmic support consists mainly in the iterative forward search algorithm
(Müller, 2009), implemented in Java.

Other commercial solutions include Evolvera TimeEdit (Evolvera, 2010), which is
currently used by more than 30 universities in Northern Europe, including the KTH
Royal Institute of Technology in Stockholm, Infosilem EnCampus (Infosilem, 2010) and
CELCAT Timetabler (Celcat online, 2010).

The main problem with all commercial solutions is that it is difficult to adapt to all
the specific scheduling needs a university can have. Another problem can be the
integration with room-booking applications used at a university, but that can be solved by
providing a room-booking engine included in the software package, as is the case with
the CELCAT Timetabler.

3 Scheduling problems through the semester

In this section, we will briefly describe the organisation of educational activities at our
institution: Faculty of Electrical Engineering and Computing (FER), University of
Zagreb, Croatia, having several thousand of students, between 130 and 140 courses per
semester spanned over five years (i.e., 3 + 2).

Since we are not directly involved with lecture scheduling, we will briefly describe
only the outcome. The lecture scheduling process results with a lecture timetable and for
each course students are divided into lecture groups. On some courses, several lecture

 54 M. Čupić and T. Franović

groups may be combined into a bigger group and assigned to a lecture room (depending
on the lecture room capacity). For each course, students may have one or more lectures
during one week. For example, on the first-year Digital logic course the number of
enrolled students is around 800. These students are divided into ten lecture groups. Each
lecture group has four hours of lectures (two hours in two days). Having limited room
resources, lectures are scheduled during the whole day. However, the lecture timetable is
created in such a way that during a single week each group has lectures either in the
morning or in the afternoon. The following week the schedule is reversed, so that groups
which had lectures in the morning the previous week now have lectures in the afternoon,
and vice-versa. However, there are exceptions to this pattern. Some courses on the third
year and all of the courses for graduate students do not alternate.

Exam scheduling is performed for four periods. After lecture week 5 there is a
two-week period for first midterm exams (Figure 1, weeks A). After lecture week 9 there
is another two-week period for second midterm exams (Figure 1, weeks B). Finally, after
lecture week 13 there is a two-week period for final exams (Figure 1, weeks C). For
students who failed the course and for students who are not satisfied with the obtained
results, make-up exams are organised in the week following the final exams (Figure 1,
week D). More information on exam scheduling is provided in Section 4.

Figure 1 Timeline for semester-wide organisational activities

Notes: Each box represents one week. 1–13 are lecture weeks, A–D are exam weeks.

Once the lecture and exam timetables are created, course enrolments are resumed.
However, during this period, students’ freedom to choose courses is restricted: they
cannot enrol to courses which have exams at the same time. Additionally, they cannot
enrol courses which have only one group of lectures, and these lectures are at the same
time. This period is known as late enrolments, and the number of such students is
relatively small (although not insignificant) compared to the number of students enrolled
during the regular enrolment period.

Late enrolled students are also not automatically assigned to lecture groups. Namely,
since these students enrolled after the lecture schedule has been completed, free space in
the lecture groups is limited and each late enrolled student potentially competes with
other late enrolled students for that space. This is especially true if the enrolled course has
multiple groups with multiple lecture terms. Instead, group assignment for late enrolled
students is performed periodically, only after a number of enrolments have been
processed, in an attempt to ensure that lecture schedules for all of these students remain
without collisions. The algorithm solving this problem is further described in Section 5.

To help students to keep track of all activities, we have developed a web-based
system named Ferko (see Figure 2). This system integrates the functionality of a course

 Scheduling problems at a university 55

management, learning management and timetable system. After logging in, students are
provided with a personalised calendar showing all the student’s educational activities
(lectures, laboratories, exams, etc.). Ferko is also equipped with a schedule analysis
module which allows us to easily obtain schedule activities for a given period of time for
specified students, which is then used as input for other scheduling algorithms which
create additional schedules which must not conflict with the existing ones. These
schedules can then be published in Ferko which will make them visible to students and to
other scheduling algorithms. For each user (student or a member of teaching staff), Ferko
also provides the activities in iCal format, which can then be used for live
synchronisation with any time-management system (e.g., one of the most popular among
our students is Google Calendar, followed by a number of calendar readers on mobile
devices).

Figure 2 Ferko is a system which combines CMS-capabilities and timetabling

Once the semester begins, a centralised laboratory scheduling is performed, which must
create laboratory timetables for lecture weeks 3 to 13, taking into account previously
created lecture timetables. During lecture week 1, laboratories are not organised on any
course, and if a course requires laboratories in lecture week 2, these are scheduled as
make-up assignments, as described in Section 7. The algorithms used for centralised
laboratory scheduling are described in Section 6. All of those schedules are published in
Ferko.

Finally, once the centralised scheduling activities are finished, a number of sporadic
scheduling processes take place. On some courses, some lecture terms will be skipped
due to absence of the lecturer. Some students will skip assigned laboratory terms due to
medical (or other) reasons. Some students will not attend first or second midterm exams.
For some courses additional lecture terms will be requested. Some courses will have
requirements on laboratory scheduling that cannot be expressed in the form of the
supported constraints. These (and similar) requests are left to course staff to handle.
However, we have developed a number of tools and algorithms which are used by course
staff for the creation of appropriate schedules and for their publishing in Ferko. Details
are provided in Section 7.

4 Exam scheduling

One of the earliest scheduling activities for a semester is the creation of exam timetables.
This activity is started after the regular course enrolments period has finished and the
information about which students enrolled which courses is available. Due to the fact that
our institution has prerequisite-based course enrolments and offers a number of

 56 M. Čupić and T. Franović

specialisation and elective courses, students are enrolled in many different combinations
of courses making the exam scheduling rather difficult. At the same time, we are not
interested in just finding some possible timetable that would allow all students to take
exams for the enrolled courses. Instead, we are interested in finding a good-quality
timetable, which for as many as possible students has exams dispersed through the entire
exam period and which interleaves more difficult exams with the less difficult-ones. The
final result of this timetabling process is a term for each course in which the exam will be
held and a set of assigned and booked exam-rooms. This way, students will have enough
time to review the course material before taking the exam, and course staff will only have
to produce and publish a schedule of students for assigned exam-rooms (for which Ferko
offers a built-in support, so the whole process requires several mouse clicks).

To create such a schedule, the scheduling process is divided into two phases:

1 exam-term allocation

2 exam-room assignment, as shown on Figure 3.

Figure 3 Exam-scheduling process is divided into two phases: first results with exam-term
timetable and second with room-allocations

4.1 Course exam-term, allocation

In order to create course exam-term timetables, we need a list of days which make the
exam period, divided into available time slots, a list of students enrolled on each course
and an estimate of the exam difficulty for each course. The first two are obtained from
faculty administration. To obtain the third, we have setup a web-based system which
enables students to fill in a poll after they finish the semester in which they can express
their opinion on the difficulty of each exam they took. This data is then used in the
following year as estimation of course exam difficulty.

Having all the necessary data, we define the problem of finding a course exam-term
timetable as combinatorial optimisation problem of assigning single time slot (i.e., term)
to each course, with additional hard and soft constraints. We define the following hard
constraints:

• no exams should be scheduled at the same time if they share enrolled students
(student conflicts)

• for each available term, multiple course exams can be scheduled, but term capacity
cannot be exceeded

and the following soft constraints:

 Scheduling problems at a university 57

• it is bad for a student to have more than one exam on the same day

• it is bad for a student to have more exams on two (or more) consecutive days

• it is bad for a student to have more difficult exams close to each other.

Soft constraints are handled by multiplying the number of violations with the appropriate
factor, and then summing them up. For the difficulty of exams, we have defined an
interval [0.2, 2] which determines the exam difficulty based upon obtained student poll
results. This measure is then used as a factor in the exam penalty calculation. Since the
measure of difficulty is not a binary feature, it could only be included as a soft constraint.
The goal of scheduling is to find such a timetable (which satisfies all of the hard
constraints) from a set of all valid timetables which has the best quality (minimal
violation sum).

To solve this problem, we have developed two implementations based on
evolutionary computation algorithms. One is based on the genetic algorithm (Cupic et al.,
2009), and the other one on ant colony optimisation. At our institution, exam schedules
created this way have now been in use for two years. In each exam period, two exam
weeks (see Figure 1) are separated in a total of 40 non-overlapping terms in which 130 to
140 courses are scheduled.

A typical run of both schedulers is shown on Figure 4. The quality of the obtained
schedules is reasonably high. In the shown example, the majority of students on the first
year of the undergraduate study programme are enrolled in five courses, and the created
schedule had exams distributed on Wednesday and Friday of the first week, and on
Monday, Wednesday and Friday of the second week.

Figure 4 Average progress of genetic algorithm compared to ant colony optimisation algorithm
for exam-term timetabling problem (see online version for colours)

Note: Both algorithms are capable of finding good-quality solutions.

Make-up exams (scheduled at the end of semester) require separate handling. Since the
available time is only half of the time available for the final exams, courses are scheduled
with more density. However, considering the fact that only a moderately small number of

 58 M. Čupić and T. Franović

students is actually present on make-up exams, this is not a problem. During the make-up
exam scheduling, care must be taken not to schedule a make-up exam for a course too
close to the final exam of the same course.

4.2 Exam-room, assignment

Once the exam-term timetable is created and after the late enrolled students have been
processed (so that the number of students on each course is stable), phase 2 is started. Its
goal is to create a room assignment that will allow all exams to take place that will utilise
as little as possible course staff required for exams and that will have exam rooms for
each course as geographically close as possible. Additionally, for each course additional
requirements of course staff must be taken into account. To this end, before starting
phase 2, course staff can specify additional constraints in Ferko, such as the maximal
number of students they will accept for each available room. This is then formulated as
an optimisation problem for which a genetic algorithm based solution is implemented.
Since the exam time slots in which exams were scheduled are non-overlapping, this
problem can be solved one time slot at a time. Once the room assignment is done, the
complete exam-schedule is published in Ferko, and the rooms are booked through the
institution room-booking system. A detailed discussion on this subject can be found in
Cupic et al. (2010).

5 Late student lecture group assignment

Assigning lecture groups to students who enrolled late to one or more courses is a
combinatorial optimisation problem. Since late enrolled students and their choices were
unknown at the time of the regular lecture schedule creation, lecture scheduling and
division of students into groups was performed with respect to regularly enrolled
students. After the lecture schedule is created, student groups, lecture times and room
assignments are fixed, leaving only a small number of available places in each lecture
group. Performing greedy group assignment (during the enrolment of each student)
would fill those places in a non-optimal way, possibly disabling other students to enrol
the required courses. To remedy for this, lecture group assignments for late-enrolled
students are deferred for some time. Then, an evolutionary-based algorithm is employed
with a task to find optimal lecture group assignments. This algorithm cannot move
regularly enrolled students among groups. Its task is to schedule late enrolled students by
adding them to existing groups. Each assignment is then evaluated with respect to several
constraints.

Constraints are divided into:

1 group capacity constraints

2 no-conflicts constraint

3 no-gaps in schedule.

Group capacity constraints are the result of lecture scheduling and lecture room
assignments, and are of the following form.

 Scheduling problems at a university 59

count (1 / 1.01) + count (1 / 1.03) <= capacity (r_l)

count (1 / 1.02) + count (1 / 1.04) <= capacity (r_2)

count (2 / 1.01) <= capacity (r_2)

count (2 / 1.02) <= capacity (r_2)

…

For example, the first constraint requires that on the course with ID = 1 the sum of the
number of students in groups 1.01 and 1.03 does not exceed the capacity of room r_l.
The second constraint requires that on the same course the sum of the number of students
in groups 1.02 and 1.04 does not exceed the capacity of room r_2, etc. The no-conflicts
constraint requires that lecture group assignment must be performed in such a way which
will enable all of the late-enrolled students to follow lectures of enrolled courses, i.e.,
there must be no conflicts in students’ lecture schedules. For example, if a group must be
assigned to a student that enrolled the course with ID = 1, there would be four possible
group assignments on that course: group 1.01, group 1.02, group 1.03, or group
1.04. From the presented group capacity constraints we can conclude that groups 1.01
and 1.03 have lectures for the course with ID = 1 at the same time; the same is true
for groups 1.02 and 1.04, so, in effect, the number of choices for that student and that
course is actually only two. In order to check this constraint, an algorithm must be
provided with a detailed lecture schedule for all lecture groups and all courses.

Finally, the no-gaps in schedule-constraint requires that lecture group assignment
must be performed in such a way that the resulting lecture schedule for each student does
not contain gaps during any day (for example, to have scheduled lectures on Monday
from 8 AM to 11 AM and then from 1 PM to 3 PM with a gap between 11 AM and
1 PM).

Unfortunately, for the problems we faced, all of those constraints could not be
satisfied. So we defined a vector [OCM, Gaps] representing the quality of lecture group
assignment. The pseudocode on Figure 5 explains the evaluation procedure. For lecture
schedule conflicts a period of two consecutive lecture weeks has been analysed (since
lecture schedules alternate).

As it can be seen from the pseudocode, the first component of the evaluation vector is
the sum of conflicts in students’ lecture schedules and additional overflows caused by the
optimisation algorithm. Namely, in rare cases, it is possible that after the lecture
scheduling some of the groups are already over-capacitated. For each group g, the
function initial_overf low(g) returns this overflow (or zero, if no overflow
occurred). When evaluating the quality of group assignment, for each group we calculate
only the increase of overflow (denoted addedOverflow) and if that value is positive,
its square is added to the total amount of overflows. Non-linear mapping is chosen in
order to encourage more smaller overflows over few large overflows. The second
component of the evaluation vector is a value which is proportional to the total amount of
conflicts in lecture schedules (denoted as Gaps).

Based on the described evaluation procedure, we developed a multi-population
tournament-based genetic algorithm with ring-topology and migration of best solution
into next population after each epoch. One epoch was defined as 200,000 reproductions
(applications of crossover and mutation operators). Each population was run in isolation
for one epoch. Then, a best solution from each population migrated into its neighbouring

 60 M. Čupić and T. Franović

population, and the process was repeated. We typically used eight populations, each
consisting of 2,000 individuals. Solution comparison is implemented by first comparing
the first component of evaluation vector. Only if first components are identical, the
second component was inspected. This way algorithm will first try to find such
assignment in which a number of conflicts and overflows is minimal, and only then gaps
will be minimised.

For illustration, Figure 6 shows the run of this optimiser on the problem of assigning
lecture groups to 82 late enrolled students which compete for 20 different courses, with
133 requirements for lecture group assignments. For this problem, there were 107 active
group capacity constraints.

As can be seen from Figure 6, the algorithm finished with 0CM = 80. Detailed
analysis showed that there were two group capacity constraints where the algorithm
increased the overflow by 1 and three group capacity constraints where the algorithm
increased the overflow by 2 (giving in total 14). There were 33 hours of conflicts (giving
2 ⋅ 33 + 14 = 80) distributed among 11 students in a period two weeks. In this
assignment, there are 575 hours of gaps distributed among 62 students over a period of
10 days, giving an average of 0.93 hours per student per day. The lecture schedules for
the remaining 20 students contained no gaps.

Figure 5 Pseudocode of the function for evaluation of the lecture group assignment problem

conflicts = 0, overflows = 0, gaps = 0

for each assigned group g

 overflow = number_of_students(g) - capacity (g)

 addedOverflow = overflow - initial_overflow (g)

 if addedOverflow > 0

 overflows += power(addedOverflow, 2)

 end if

end f or

for each late enrolled student s

 for each analysed day d

 for each conflict c of s in d

 conflicts += 2 * duration (c)

 end for

 for each gap g of s in d

 gaps += 2 * duration(g)

 end for

 end for

end for

0CM = conflicts + overflows

Gaps = gaps

 Scheduling problems at a university 61

Figure 6 Progress and final results for group assignment scheduler, (a) amount of group
overflows and student schedule conflicts (b) amount of gaps in created schedules

(a) (b)

6 Laboratory scheduling

Laboratory scheduling is one of the most complex scheduling problems tackled by us so
far, due to the large number of constraints. To enable each course to express its
requirements, a new module was added to Ferko, which is a wizard-like web-based
application in which course staff can specify the number of laboratory exercises,
acceptable laboratory rooms, number of teaching staff members required per room,
number of students per room, acceptable days for each exercise, the maximal number of
rooms and the maximal number of teaching-staff members which can be allocated in
parallel, requirements for specific programme licences, required ordering of laboratory
exercises if more than one exercise must be scheduled in the same week and many others.
Additionally, since laboratory exercise scheduling is performed after the lecture
schedules are created, the lab-exercise scheduler must be equipped with individual
lecture-schedules of each involved student, and the produced lab-exercise schedule must
have no conflicts with lecture schedules.

Based on those requirements, two algorithms were developed for schedule creation:
one based on the genetic algorithm and one based on ant colony optimisation, which are
described in Bratkovic et al. (2009) and Matijas et al. (2010). The time needed for a
single person to operate these algorithms and to create the required lab-schedules for
lecture weeks 3 to 13 is typically between 12 and 15 working days, so the creation and
publishing of the lab-exercise schedule for the entire semester is typically done in the
fifth lecture week. Once created, lab-schedules are published in Ferko, where course staff
can use them to obtain a list of students for each lab-term.

7 Make-up assignments scheduling

In order to assist course staff members in creating student’s schedules for make-up
assignments, such as laboratory exercises, lectures, quizzes, etc., a number of additional
tools have been created: a simple scheduler, a multi-term scheduler, a team scheduler and
a new Ferko module called FerSched.

 62 M. Čupić and T. Franović

7.1 Console-based schedulers

To tackle scheduling problems which are not directly supported by previously described
schedulers, we have developed three command-line tools that offer an easy way to
experiment with possible schedule requirements. All of those tools take schedule
requirements as input from a textual file and a list of students’ prescheduled activities
from Ferko and generate output which can be published in Ferko.

Simple scheduler requires a user to specify a set of terms with term capacities (then
number of students that can be assigned to that term) and a set of students to be
scheduled. Each student is scheduled into one of the provided terms taking into account
students preexisting schedule. This tool is one of the simplest ones, and is implemented
as a simple random-based iterated search.

Multi-term scheduler can be used when a set of students must be split into a
predefined number of groups and when each group must be assigned to multiple
predefined terms. For example, let us assume that a set of 300 students must be divided
into three groups: Gl, G2 and G3. Gl will have two lectures: Monday from 8 AM to
9 AM and Tuesday from 8 AM to 9 AM, G2 will have two lectures: Monday from 9 AM
to 10 AM and Tuesday from 9 AM to 10 AM, and finally, G3 will have two lectures:
Monday from 10 AM to 11 Am and Tuesday from 5 PM to 6 PM. This tool is also
implemented as a simple random-based iterated search.

Figure 7 Average progress of ClonAlg algorithm for team-scheduling problem (see online
version for colours)

Note: Scheduler stabilises below 500 minutes of conflicts.

Team scheduler is used in the following situation. Students on a course are divided into
smaller teams and each team has a course staff member assigned. Each team has assigned
only one course staff member, but a single course staff member can be assigned to
multiple teams. All of this is determined in advance. Given this information, students’
preexisting schedules and a list of possible time slots for laboratory exercises (or other
activities) a schedule must be created in which every team is assigned one available time

 Scheduling problems at a university 63

slot, multiple teams can be assigned into the same time slot (up to its capacity) and no
two teams having the same preassigned course staff member can be assigned into the
same time slot. This is a rather difficult combinatorial optimisation problem for which an
algorithm based on the clonal selection algorithm (a member of artificial immune
algorithms) (De Castro and Von Zuben, 2000; De Castro and Timmis, 2002; Cutello and
Nicosia, 2005) is created. For the last several semesters, this scheduler has been
successfully used on several courses requiring such scheduling.

The progress of the team scheduler used to schedule 47 teams in a single day is
shown on Figure 7. In this problem, the average number of students per team was 8, and
there were only 5 course staff members, each having an average of 9 teams assigned. The
best found solution had 330 minutes of conflicts (11 students each having 30 minutes of
conflicts).

7.2 FerSched module

The FerSched module is composed of two main components: a Java Applet (Java Applet
Technology, 2010) for defining the schedules, and an application which can be run
locally in order to create schedules from the input data.

In the applet, the user has the possibility to define detailed constraints of each
schedule. These constraints can be defined on the following three levels, listed
hierarchically: the plan, event and term levels. On each of these levels, there are three
main constraints which can be defined, and regard the availability of students, time spans
and rooms. Naturally, if a constraint is defined on one of the levels it becomes locked,
and therefore cannot be defined on the other two levels, and levels of lower hierarchy
inherit in a way the constraints from the hierarchically higher level.

In order to provide an illustrative example, the scheduling of laboratory exercises for
student assistants for the Digital logic course will be used. Firstly, the user defines all the
affected students on the plan level (in the example, there are 51 of them). As there will be
two events and both events should take place in the same week, the available time span
could also be defined on the plan level. Secondly, the user creates two events: the theory
event, and the practice event. Since these events differ in length, it is necessary to define
their durations (two hours for theory, and one hour for practice). As for every student the
theory event should occur one day before the practice event, we set this as preconditions
for the events. The next step is to define the available rooms for each of the events. Since
we do not want to overcrowd the computer rooms with students we can limit the room
capacity for the rooms assigned to practice to 18 students. Finally, the user manually
defines the number of terms allowed for each of the events (later referred to as the given
distribution), selecting 1 term for theory and 3 or practice. This yields a valid plan, ready
for processing. If any errors are found, they are reported to the user before the creation of
the final plan.

The plan level serves to represent the schedule as a whole, and thus every solution
will eventually be presented in form of a plan. A plan is composed of events that is
make-up assignments which have their own duration, distribution and preconditions,
which are in turn composed by terms. A term is an actual realisation of an event, meaning
that it is uniquely defined by its start time, duration, assigned room, and a list of assigned
students.

The plan level offers the user the possibility to define only the main constraints such
as the selected students, the available time-span and the available rooms. If some of these

 64 M. Čupić and T. Franović

constraints are set on the plan level, they are inherited by the levels lower in the
hierarchy. The event level offers the possibility of defining more specific constraints,
apart from the main ones. These include the duration, distribution and preconditions of
each event. The duration denotes the maximal duration of any term which is the
realisation of the event. The distribution can be set as random or given. A random
distribution enables the user to define the range of values which can be used as the
number of terms and lets the algorithms choose the adequate number of terms, while the
given distribution offers the possibility to manually create the terms for an event and also
define term-specific constraints. The preconditions determine all the events whose terms
must occur before the terms of this event, and also the minimal time margin between
events. The term level, similarly to the plan level, allows only the definition of the main
constraints. It is possible to define the constraints at term level only if the given
distribution is used for the event.

After a schedule has successfully been defined, the applet proceeds to retrieve from
Ferko all the needed data concerning the student and room occupancies. When this
process is successfully completed, the module create an executable Java application (.jar)
which can be downloaded and run locally to create the schedule.

The schedule creation application processes the occupancy data provided by Ferko
and attempts to create a valid schedule (the term will be defined later in the text) with the
aid of evolutionary algorithms. The algorithms following algorithms are implemented
thus far: bee colony optimisation (Chong et al., 2006), clonal selection algorithm
(Brownlee, 2005), genetic algorithm (Bratkovic et al., 2009), harmony search (Geem,
2009), particle swarm optimisation (Clerc, 1999) and stochastic diffusion search (Meyer
et al., 2006).

In order for the different algorithms to be able to exchange partial solutions, they
must all implement the same interface. The interface defines common operations which
every algorithm has to be able to perform, such as start, stop, return the currently best
solution, include a solution from another algorithm into the population, etc. Solution
exchange is a mechanism which provides the algorithms with quality solutions which
enhance and diversify their population. The algorithm which is used to execute the next
iteration of the schedule generation process is randomly chosen based on roulette wheel
selection, where the intervals corresponding to the probability of each algorithm to be
selected are set by the user when starting the schedule generation process.

During the schedule creation process, the user is provided with live feedback on the
progress of the solutions by means of a JFreeChart (2010) bar chart (as shown in
Figure 8) whose bars represent each of the following constraints used to rank the
solutions: unsatisfied preconditions, room conflicts, student conflicts, overcrowded
rooms, number of terms and vacant places. The constraints are divided into hard and soft
constraints. The hard constraints (unsatisfied preconditions, room conflicts, student
conflicts, overcrowded rooms) represent the constraints which must be satisfied. A
schedule is considered valid if and only if all hard constraints are satisfied. The soft
constraints (number of terms, vacant places) are a measure of quality of the solution, and
are used to further rank all valid schedules.

Unsatisfied preconditions are expressed by events which do not satisfy their
preconditions, i.e., their terms do not respect the minimal time margin from the terms of
the event which is the precondition. Room conflicts are represented by the number of
15-minute intervals in which a single room is occupied by two distinct terms. Similarly,
student conflicts are expressed as the number of 15-minute intervals during which a

 Scheduling problems at a university 65

student is assigned to two distinct terms. The overcrowded rooms constraint expresses the
number of rooms where the number of assigned people exceeds the room capacity. The
numbers of terms and vacant places, as their names say, denote the total number of terms
in the schedule and the total number of vacant places in all assigned rooms. The order in
which the hard constraints are presented also defines their priority when comparing, i.e.,
a schedule with fewer unsatisfied preconditions and some room conflicts is considered
better than a schedule with more unsatisfied preconditions but no room conflicts. If all of
the hard constraints for two schedules have the same values, the ranking is then
performed by comparing the weighted sums of the soft constraint values.

Figure 8 An example of the feedback provided to the user during FerSched schedule creation
(see online version for colours)

 0

 5

 10

 15

 20

 25

 30

 35

(1) (2) (3) (4) (5) (6)

0 0

24

0

4

32

Notes: 1 = Unsatisfied preconditions; 2 = room conflicts; 3 = student conflicts;
4 = overcrowded rooms; 5 = number of terms; 6 = vacant places;
[l–4] = Hard constraints; [5, 6] = Soft constraints

The user can stop the scheduling process as soon as he is satisfied with the result shown
as feedback on the screen, and is then provided with an overview of the schedule,
including the remaining student conflicts in case a valid schedule could not be generated.
The user is also offered the option to export the generated schedule into XML, which can
then be transferred to Ferko and thus create a new student assignment for all of the
assigned students, which will immediately be available in the students’ personal
calendars. The room reservations are also handled automatically.

Figure 9 shows a graph representing the change in constraint values through iterations
for the example problem. The most notable decrease is present in the number of student
conflicts, which usually decreases exponentially.

 66 M. Čupić and T. Franović

The algorithms which have proved to work successfully together in terms of solution
exchange are the genetic algorithm, clonal selection algorithm and harmony search. The
remaining algorithms have longer initialisation times, and thus produce better results
when used alone.

Figure 9 Constraint change through iterations during a single run of FerSched schedule creation
(see online version for colours)

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400

N
um

be
r

of
 v

ac
an

t p
la

ce
s

Iterations

Vacant places

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400

N
um

be
r

of
 c

on
fli

ct
s

Iterations

Student conflicts

 0

 1

 2

 0 100 200 300 400

N
um

be
r

of
 c

on
fli

ct
s

Iterations

Room conflicts

 0

 1

 2

 0 100 200 300 400N
um

. o
f u

ns
at

. p
re

co
nd

iti
on

s

Iterations

Unsatisfied preconditions

 0

 1

 2

 0 100 200 300 400N
um

. o
f o

ve
rc

ro
w

de
d

ro
om

s

Iterations

Overcrowded rooms

 0

 1

 2

 3

 4

 5

 0 100 200 300 400

N
um

be
r

of
 te

rm
s

Iterations

Terms

As far as the conduced tests show, the algorithms are relatively successful in schedule
creation. The distribution of 51 students in 2 events, having 1 and 3 terms, respectively
takes approximately 8 seconds to complete, while a schedule containing more than
600 students and 4 events with 4 terms each presents a notable decrease in conflicts in
approximately 45 seconds.

8 Conclusions and future work

In this paper, we have described a number of situations constantly being presented to
faculty staff members which are, in fact, various cases of scheduling problems. Formally,
most of those problems are, from the computation complexity point of view
combinatorial NP-hard problems.

As part of the Ferko project, a number of algorithms are being developed in order to
tackle these problems and to help create better conditions for students, and faculty and
course staff members. Some of the developed algorithms are presented in this paper.
Although scheduling problems can be tackled by a number of different algorithms,
evolutionary computation offered us an elegant, consistent and exciting framework for

 Scheduling problems at a university 67

the implementation of various schedulers which are now regularly used at our institution,
and which provide good-quality schedules.

It is important to realise that schedules created this way significantly helped us to
conduct the alignment with the Bologna process, to organise laboratory exercises in
prerequisite-based course enrolment and to try to create better and less stressful exam
timetables.

From the students’ standpoint, the development of such a scheduling system is
beneficial because it enabled students to have all of their activities scheduled in one
place. This is important because it gives students the possibility to overview their
activities and assignments at all times. Many students at universities which have not
adopted a similar scheduling model have a hard time following their activities on
multiple systems in use by the university. Also, the use of a comprehensive scheduling
system at university level allows for the creation of higher quality schedules with respect
to all of the student’s obligations, which would not be possible if department-specific
systems were used for different courses.

At a single course level, significant efforts were also made in order to help course
staff to better and more easily organise all course-related events. Specifically, algorithms
were developed and integrated into Ferko which now allow course staff members to
relatively easily schedule various kinds of make-up assignments without causing conflicts
with previously scheduled students’ obligations.

As part of future work, there is much room left for enhancements: either from the
standpoint of expressiveness, or from the standpoint of efficiency, quality, and better and
more usable integration with Ferko. All of those are areas of future research.

Acknowledgements

The authors would like to acknowledge the students Mihej Komar and Toni Pivcevic for
their work on the application for gathering laboratory schedule specifications and new
exam-term scheduler, the students Zlatko Bratkovic, Tomislav Herman, Vjera Omrcen,
Vatroslav Dino Matijas and Goran Molnar for their work on the laboratory schedulers,
the team of students who created the FerSched module, and all the others participating in
the development of Ferko and accompanying modules.

References
Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M. and McCollum, B. (2006) ‘A tabu based large

neighbourhood search methodology for the capacitated examination timetabling problem’,
Journal of Operational Research Society, Vol. 58, No. 11, pp.1494–1502.

Adamidis, P. and Arakapis, P. (1997) ‘Weekly lecture timetabling with genetic algorithms’, in
Proc. of PATAT-97, pp.115–122.

Affenzeller, M. and Wagner, S. (2009) Genetic Algorithms and Genetic Programming, Modern
Concepts and Practical Applications, CRC Press, Boca Raton.

Beligiannis, G.N., Moschopoulos, C.N., Kaperonis, G.P. and Likothanassis, S.D. (2008) ‘Applying
evolutionary computation to the school timetabling problem: the Greek case’, Computers and
Operations Research, Vol. 35, No. 4, pp.1265–1280.

Blakesley, J.R. (1959) ‘Automation in college management’, College and University Business,
Vol. 27, No. 5, pp.39–44.

 68 M. Čupić and T. Franović

Bratkovic, Z., Herman, T., Omrcen, V., Cupic, M. and Jakobovic, D. (2009) ‘University course
timetabling with genetic algorithm: a laboratory exercises case study’, in Proceedings of the
9th European Conference, EVO COP 2009’.

Brownlee, J. (2005) ‘The clonal selection classification algorithm (csca)’, Technical report, Centre
for Intelligent Systems and Complex Processes, Faculty of Information and Communication
Technologies, Swinburne University of Technology, Victoria, Australia.

Celcat online (2010) Available at http://www.celcat.com.
Chong, C., Low, M.H., Sivakumar, A. and Gay, K. (2006) ‘A bee colony optimization algorithm to

job shop scheduling’, in Proceedings of the 2006 Winter Simulation Conference,
pp.1954–1961.

Clerc, M. (1999) ‘The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization’, in Proceedings of the 1999 ICEC, pp.1951–1957.

Colorni, A., Dorigo, M. and Maniezzo, V. (1990) ‘A genetic algorithm to solve the timetable
problem’, Technical Report 90-060, Politecnico di Milano.

Cumming, A. (1997) ‘Timetabling with neeps and tatties’, available at http://www.soc.napier.ac.uk/
~andrew/dneeps/.

Cupic, M., Golub, M. and Jakobovic, D. (2009) Exam timetabling using genetic algorithm, in
Proceedings of the 31st International Conference on Information Technology Interfaces,
Cavtat, Croatia, pp.357–362.

Cupic, M., Golub, M. and Jakobovic, D. (2010) ‘Applying AI-techniques as help for faculty
administration – a case study’, in Central European Conference on Information and Intelligent
Systems 2010, Varazdin, Croatia.

Cutello, V. and Nicosia, G. (2005) ‘The Clonal Selection Principle for In Silico and In Vitro
Computing, Edited by L.N. De Castro and F.J. Von Zuben, Idea Group Publishing, Chapter 4,
pp.104–146.

De Castro, L.N. and Timmis, J. (2002) Artificial Immune Systems: A New Computational
Intelligence Approach, Springer-Verlag, Great Britain.

De Castro, L.N. and Von Zuben, F.J. (2000) ‘The clonal selection algorithm with engineering
applications’, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ‘00), Workshop on Artificial Immune Systems and Their Applications, Las Vegas,
Nevada, USA, pp.36–39.

De Jong, K.A. (2006) Evolutionary Computation, MIT Press, Cambridge.
Deb, K. (2009) Multi-Objective Optimization using Evolutionary Algorithms, Wiley, New York.
Dorigo, M. and Stiitzle, T. (2004) Ant Colony Optimization, MIT Press, Cambridge, MA.
Eberhart, R. and Kennedy, J. (1995) ‘A new optimizer using particle swarm theory’, in

Proceedings of the Sixth International Symposium on Micro Machine and Human Science,
Nagoya, Japan, pp.39–43.

Evolvera (2010) Available at http://www.evolvera.se.
Feoktistov, V. (2006) Differential Evolution. In Search of Solutions, Springer, New York.
Geem, Z.W. (2009) Music-inspired Harmony Search Algorithm Theory and Applications,

Springer-Verlag, Berlin.
Gueret, C., Jussien, N., Boizumault, P. and Prins, C. (1995), ‘Building university timetables using

constraint logic programming’, Selected papers from the First International Conference on
Practice and Theory of Automated Timetabling, pp.130–145.

Infosilem (2010) Available at http://www.infosilem.com.
Java Applet Technology (2010) Available at http://java.sun.com/applets/.
JFreeChart (2010) Available at http://www.jfree.org/jfreechart/.
Kambi, M. and Gilbert, D. (1996) ‘Timetabling in constraint logic programming, in Proc. 9th

Symp. on Industrial Applications of PROLOG, pp.320–334.

 Scheduling problems at a university 69

Lim, A., Ang, J.C, Ho, W.K. and Oon, W.C. (2000) ‘A campus-wide university examination
timetabling application’, in Proceedings of the 17th National Conference on Artificial
Intelligence and 12th Conference on Innovative Applications of Artificial Intelligence,
pp.1020–1015.

Mackworth, A.K. (1977) ‘Consistency in networks of relations’, Artificial Intelligence, Vol. 8,
No. 1 pp.99–118.

Mamede, N. and Rente, T. (1997) ‘Repairing timetables using genetic algorithms and simulated
annealing’, in Proc. of PATAT-97, pp.187–204.

Matijas, V.D., Molnar, G., Cupic, M., Jakobovic, D. and Dalbelo Basic, B. (2010) ‘University
course timetabling using ACO: laboratory exercises case study’, in 14th International
Conference on Knowledge-Based and Intelligent Information and Engineering Systems,
Cardiff, Wales, UK.

Meyer, K.D., Nasut, S.J. and Bishop, M. (2006) ‘Stochastic diffusion search: partial function
evaluation in swarm intelligence dynamic optimization’, Studies in Computational
Intelligence, Vol. 31, pp.185–207, Springer, Berlin/Heidelberg.

Müller, T. (2009) ‘Itc2007 solver description: a hybrid approach’, Annals of Operations Research,
Vol. 172, No. 1, pp.429–446.

Montes de Oca, M.A., Stiitzle, T., Birattari, M. and Dorigo, M. (2009) ‘Frankenstein’s PSO: a
composite particle swarm optimization algorithm’, IEEE Trans, on Evolutionary Computation,
Vol. 13, No. 5, pp.1120–1132.

Ozcan, E., Misir, M., Ochoa, G. and Burke, E.K. (2010) ‘A reinforcement learning – great-deluge
hyper-heuristic for examination timetabling’, International Journal of Applied Metaheuristic
Computing, Vol. 1, No. 1, pp.39–59.

Price, K.V., Storn, R.M. and Lampinen, J.A. (2005) Differential Evolution. A Practical Approach
to Global Optimization, Springer-Verlag, Berlin.

Salwach, W. (1997) ‘Genetic algorithms in solving constraint satisfaction problems: the timetable
case’, Badania Operacyjne i Decyzje (Poland), Vol. 2, pp.55–63.

Thompson, J. and Dowsland, K.A. (1996) ‘Variants of simulated annealing for the examination
timetabling problem’, Annals of Operations Research, Vol. 63, No. 1, pp.105–128.

UniTime | University Timetabling (2010) Available at http://www.unitime.org.

