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Abstract—We propose a solution which enables automated
attribution of formative exams to students. We define the
student identifier matrix, which is a graphical representation
of a student ID number. The matrix is annotated by the
student during the exam. We introduce a robust image
processing procedure which enables automated recovery
of the student ID from the matrix. We show that the
proposed procedure achieves a recognition rate of 100%
on 296 samples in presence of skewing, rotation and offsets
introduced by the printing and the scanning processes.

I. I NTRODUCTION

Multiple choice exams [1, 2, 3] are often used for
a knowledge assesment in the university environment.
Automated grading of multiple choice exams is a method
of choice for university courses with a large number
of students. Existing solutions [4, 5] support automated
grading of summative exams, i.e. regularly announced
exams which students typically take three times in a
semester. In case of summative exams, attribution of an
exam to a student is easy, as exam forms are printed with
unique bar codes which represent individual students.
However, there are scenarios where such an easy solution
is not possible. In the context of formative exams –
unannounced short exams which the teacher periodically
gives to the attending students – it isn’t practical to
print individual student bar codes on every exam form.
Formative exams need to be held in as short time as
possible (typically 5-10 minutes), so that the teacher
can have enough time to deliver the regular lecture.
The process of handing out the exams to every student
by name would add a significant overhead to the total
time taken by the exam. Therefore, the formative exams
are usually graded by hand, which is very cumbersome
and prone to human error, especially for courses with
hundreds of students. To speed up the grading process,
usually just one or two variants (groups) of the exam are
offered. On the other hand, exams graded automatically
can be completely individualized. The individualization
means that each student participating in the same exam
can have their exam questions drawn from a set of
possible questions and ordered in a specific way, so no
two students have the same exam. The problem here is
how to allow students to enter their student ID numbers by
hand, while retaining automatic readability. An existing
approach using the 7-segment digits is shown in [6].

We propose a novel approach which supports auto-
mated grading of formative exams. We introduce the
student identifier matrix, which is a graphical rendition
of the unique student number each student is given upon
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Skriptni jezici – laboratorijske vježbe, 2. ciklus

1. Što će se ispisati na zaslonu nakon izvod̄enja
sljedećeg programa:
$a=10 x 3; print $a;

(a) 101010

(b) 30

(c) 10 10 10

(d) 10 x 3

2. Što će se ispisati na zaslonu nakon izvod̄enja:
$a="098 123 4567";

$a=~s/(.*\s)(.*\s)/$2$1/; print $a;

(a) 098 4567 123

(b) 098 123 4567

(c) 123 098 4567

(d) 4567

3. Što će se ispisati na zaslonu nakon izvod̄enja:
@a=(2, 4, 6, 8, 10); $b=pop @a;

unshift @a, $b; print "@a" ;

(a) 246810

(b) 10 2 4 6 8

(c) 2468 10

(d) 2 4 6 8 10

4. Što će sadržavati varijabla $a nakon izvod̄enja:
%h = ("1", "2", "3", "3", "2", "1"); $i=1;

$a = $h{$i+1};

(a) undef

(b) "1"

(c) "3"

(d) "2"

5. Što će sadržavati varijabla $a nakon izvod̄enja
sljedećeg programa:
$a[3]=3; $a[7]=7; $a[8]=8; $a=$a[5];

(a) 0

(b) undef

(c) 1

(d) 4

6. Ako želimo u regularnom izrazu upotrijebiti
znak "?" u njegovom doslovnom značenju (ne
kao specijalni znak) to ćemo učiniti na sljedeći
način:

(a) "\?"

(b) "??"

(c) "-?"

(d) "$?"

A B C D

1. � � � �

2. � � � �

3. � � � �

4. � � � �

5. � � � �

6. � � � �

Figure 1: A sample of a formative multiple choice exam
with a student identifier matrix.

enrollment. The student identifier matrix is printed on the
exam form. An example of such an exam is shown in Fig.
1. The student identifier matrix is printed in the upper
right corner. The student then annotates the rows and
columns of the matrix corresponding to her student ID
number. We propose a robust image processing method
which detects the student identifier matrix on the exam
form and converts it into a numerical representation of
the student ID number.

II. READING STUDENT ID NUMBERS

In this paper, we assume a setup where exam forms are
printed, the answers are marked by the student, and the
forms are scanned and automatically graded. We use an
existing system for automated grading described in [4]. In
order for the automated grading to work, we need a way
to establish a correspondence between an exam form and



(a) using crosses (b) using circles

(c) fully filled

Figure 2: Three typical ways to specify student ID

a student. We do this by using student identifier matrices.

A. The student identifier matrix

The student identifier matrix is a table of 10 rows and
the number of columns equal to the length of the student
ID number. Each column represents possible values of one
digit of the student ID number. The number of rows is 10
as there are 10 possible digit values (0-9). The idea is that
the student annotates a cell in each column corresponding
to the appropriate digit in her student ID. To make the
use of the student ID matrix easier, each cell is pre-
printed with the value it corresponds to. We consider
three possible ways of annotation: crossing, circling and
filling. Three examples of annotated student identifier
matrices are shown in Fig. 2. Corresponding student ID
numbers are 3223791749, 3353213977, and 0036427581,
respectively. The case in Fig. 2c is easiest to correctly
recognize. However, the developed recognition procedure
is robust enough to correctly handle cases illustrated in
Fig. 2a and 2b.

B. Detecting the matrix

In order to detect the student identifier matrix, we make
use of several image processing techniques. The student
identifier matrix is printed on the exam form and the
approximate location of the matrix is known in advance.
However, the precise location needs to be verified because
both the printing and the scanning process can introduce
some rotations and offsets of the complete exam form.
Considering that the matrices will be used on exams in
courses with a large number of students, we require the
detection algorithm to operate very fast, as in addition to
scanning the student ID number, the student’s solutions
of the exam also need to be scanned and processed.

The process of detecting the student ID matrix begins
by manual annotation of the approximate area of the
matrix on a single exam form example. The user needs
not annotate the area with much precision, as it is only

necessary to exclude all surrounding text. For each sub-
sequent form, we assume that the matrix is located in the
same approximate area which was annotated on the first
form.

To determine the student ID number, we need to obtain
the precise location of the matrix. The exam form is
first cropped to contain only the approximate area where
the student ID matrix is expected. In order to determine
the precise location of the matrix, the obtained image is
divided into a regular grid of predefined size. To find
the left and the right edge of the student ID matrix, we
examine each horizontal line of the grid and find minimal
and maximal value ofx for which the image pixels are
black. We thus obtain a numberN of candidate points for
the left and the right edge of the matrix. Analogously we
obtain theN candidate points for the top and the bottom
edge. Using linear regression, we find the line equations
of the outer edges of the matrix.

To verify whether an individual cell was annotated, we
also need to determine the equations of the horizontal
bounding lines, which have the form given by Eq. (1):

y = ax + b (1)

Having collectedN candidate points for the top line
and the bottom line, we define sum-of-squares error for
each line:

E =
N∑

i=1

(axi + b − yi)
2 (2)

We try to find coefficientsa andb which minimize the
error defined by Eq. (2). By requiring Eq. (3) and Eq. (4)
to hold:

∂E

∂a
= 2

N∑

i=1

(axi + b − yi)xi = 0 (3)

∂E

∂b
= 2

N∑

i=1

(axi + b − yi) = 0 (4)

one can simply obtain equations (5) and (6):

a =
N

∑N

i=1
xiyi −

∑N

i=1
xi

∑N

i=1
yi

N
∑N

i=1
x2

i − (
∑N

i=1
xi)2

(5)

b =
1

N
(

N∑

i=1

yi − a

N∑

i=1

xi) (6)

The similar method can be employed to find the left and
the right vertical bounding lines of the matrix. Equation
(1) for obvious reasons can not be used for vertical lines,
so the only needed modification is to start with equation
(7):

x = ay + b (7)

Then, we define the sum-of-squares error function
(equation (8)):

E =

N∑

i=1

(ayi + b − xi)
2 (8)



Figure 3: The detected bounding box of the student ID
matrix. Corners are annotated with crosses.

By requiring equations (9) and (10) to hold:

∂E

∂a
= 2

N∑

i=1

(ayi + b − xi)yi = 0 (9)

∂E

∂b
= 2

N∑

i=1

(ayi + b − xi) = 0 (10)

one can simply obtain equations for coefficientsa andb,
which are given as equations (11) and (12):

a =
N

∑N

i=1
xiyi −

∑N

i=1
xi

∑N

i=1
yi

N
∑N

i=1
y2

i − (
∑N

i=1
yi)2

(11)

b =
1

N
(

N∑

i=1

xi − a

N∑

i=1

yi) (12)

Corners of the matrix are then found as intersections
of the edge lines. An example of the student ID matrix
with annotated edges and corners found by the described
algorithm is shown in Fig. 3.

Each outer edge of the matrix can be described by a
vector. In order to find the corners of an individual cell, we
need to move for some amount in a single horizontal and
a single vertical direction. However, in a general case we
allow the matrix to be slightly skewed, so the directions
of the pairs of horizontal and vertical edges might differ,
even though the pairs are in reality parallel. To overcome
this, we calculate the average vector from each pair, thus
obtaining the average horizontal and the average vertical
direction. Using the obtained vectors, we can find the
inner cells of the matrix by assuming that the matrix has
10 rows and the number of columns equal to the length
of the student ID number.

Since the student matrix can be poorly prepared, ad-
ditional processing is required to better locate each cell.
The possible problems are matrices in which not all rows
have precisely equal height, or matrices in which not
all columns have precisely equal width. Also, printing
the matrix with the thick outer border results in easier
matrix detection, but it can degrade the performance of
cell detection. This is illustrated in Fig. 4, where we

Figure 4: Rows and columns detected by using simple
detection.

assumed that all columns are equally wide and that all
rows have equal height. Notice that the first inner vertical
line found by the algorithm does not correspond to the
actual inner line which is offseted to the right by several
pixels.

Beside the previously mentioned first inner vertical line,
in Fig. 4 we can see several other misaligned horizontal
and vertical lines. To fix the fact that the method can
result with incorrect row and column lines, we developed
a correction procedure which is applied for each row and
column line.

The idea of the correction procedure for horizontal lines
is illustrated in Fig. 5. The given matrix represents a 5-
digit student ID. The position of the fourth horizontal
line is distorted. The dashed line represents the position
where we expect the fourth line to be. If we denote the top
left corner of the matrix with~T0, the average horizontal
vector with~h and the average vertical vector with~v, we
can define the expected start of the fourth line by:

~H4 = ~T0 +
4

10
· ~v (13)

Then, each point vector on that horizontal line can be
expressed as:

~P = ~H4 + λ ·
~h (14)

In order to perform the correction, we start by sampling
points on the horizontal line. For example, let us assume
that we selected a point~TS which lies on the expected
horizontal line. Starting from this point, we search up
and down (by changing they-coordinate) for the closest
black pixels. For the case presented in Fig. 5, the closest
black point will be several pixels above the point~TS. If,
after the first black pixel there are more black pixels in
continuum, we will set the components of the point vector
~T to (~T )x = (~TS)x and(~T )y equal to the average of the
y-coordinates of first and last continous black pixel.

Let us observe that the equation (15) then holds:

~T = ~H4 + λ ·
~h + µ · ~v (15)

whereµ · ~v is the shift by which~H4 should be corrected
in order for T to lie on the line. We note the found



Figure 5: The correction procedure for horizontal lines.

Figure 6: Rows and columns detected by using simple
detection in conjunction with correction.

µ and repeat the procedure for several more times for
new samples along the expected horizontal line, each time
obtaining a new value forµ. Finally, for the correction, we
take the median of all found values forµ, and using that
value we correct~H4. Vertical lines are corrected in similar
way (by fixingy-coordinate and searching for the nearest
left or right black pixels). Figure 6 shows the horizontal
and the vertical lines after the correction. In comparison
with the Fig. 4, we observe that there are no significant
misalignments of the horizontal and the vertical lines.

Having found all the horizontal and the vertical lines,
we can find the individual cells. Each cell is decribed
by four points denoting its corners. The corners of each
cell are determined as the intersections of apropriate
horizontal and vertical lines.

C. Determining the student ID number

Having found the image area corresponding to the indi-
vidual student ID matrix cell, we can determine whether
the cell was annotated by the student. We first consider
the following simple procedure: For each cell, we count
the total number of black pixels. Then we calculate the
ratio between the number of black pixels and the total
number of the pixels in the cell. If the ratio is greater
than some chosen threshold (let us denote it byselection
threshold), we consider the cell annotated. To obtain the
student ID number, we find the annotated cell in every
column. Here we assume an error-free case, where only
a single cell in a column can be annotated. As each cell

Figure 7: Adding margins to cells for better detection.

corresponds to exactly one digit of the student ID number,
by repeating the procedure for every column, we get the
complete number. In case more than one cell per row is
found, the system will raise an alert to the human operator.

The described procedure is quite efficient for the case
when the cells are annotated by filling, as illustrated in
Fig. 2c. However, for cases presented in Fig. 2a and 2b,
problems may occur due to possible matrix rotation and
the fact that the student did not sufficiently fill the cell.
To tackle this, we modify the procedure as follows. If,
in some column, there is no cell having the ratio of the
black pixels larger than the selection treshold, we find the
cell with the largest black pixel ratio (thecandidatecell).
Then, we look at the ratios for cells in the same row but
in other columns. We only analyze the cells for which
we are certain that the student did not select them. If our
candidate cell has the black-pixel ratio that is significantly
larger than the other unselected cells (regulated by another
theshold), we assume our candidate cell to be selected.

To make the recognition process more robust, we must
observe that often when recognition is unsucessful, the
reason is the influence of the unstable thickness of cell
borders and of skewing and rotation. To tackle this, we
consider only a part of the detected cell. The area is
defined as a maximum rectangle that can be fitted to the
cell. This rectangle is then trimmed for a percentage of
its width and height. If we have a case illustrated in Fig.
2a, we can allow for somewhat larger margins (e.g. 15%),
as illustrated in Fig. 7. On the other hand, if the student
filled the matrix as in Fig. 2b, using such margins will
elliminate a significant amount of the student generated
circles, so the recognition will be unsuccessful. This raises
the question of determining the appropriate margins.

Taking all of the described cases into account, our final
recognition procedure is as follows.

1) Find horizontal and vertical bounding lines.
2) Find row and column lines.
3) Perform correction of row and column lines.
4) Find cell edges as intersections of appropriate row

and column lines.
5) Start the recognition procedure using the whole

detected cell. If successful, return the result.
6) Start the recognition procedure using the detected



cells with 20% margins. If successful, return the
result.

7) Start the recognition procedure using the detected
cells with 10% margins. If successful, return the
result.

8) Otherwise show the matrix to the human operator
and ask for help.

D. More robust matrix border detection

In order to detect the matrix border lines, we make
use of several scan-lines from left, right, top and bottom
and follow these lines until first black pixel is detected.
Using this technique, we obtain four sets of points, each
of which contains points sampled from one border line.
However, due to scanner introduced distorsions or student
generated artefacts, some of the points can be outliers, and
in presence of outliers the lines generated by the sum-
of-squares minimization can have signifficant offset from
actual border lines.

To cope with this, the number of scan-lines should be
adequately large, and a robust procedure for model pa-
rameter estimation should be employed. With the increase
of the required number of scan-lines come performance
penalties, so the actual number should be kept as small as
possible, but large enough to provide robustness. In our
approach, we use20 scan-lines for both the horizontal
border lines and the vertical border lines. Among the point
samples, we determine the median point and then remove
all points on a sufficiently large distance (the median for
the x and y coordinates are calculated separately). This
procedure serves as a simple outlier removal tool. Having
removed obvious outliers, sum-of-squares minimization
can be employed to determine the correct parameters.

Further improvement can be obtained by using a param-
eter estimation procedure that is more robust than sum-
of-squares minimization. One simple solution can be the
usage ofRANSACalgorithm proposed by Fischler and
Bolles [7].

III. E XPERIMENTS

To test the described method, we collected a set of 148
annotated student ID matrices. The matrices were anno-
tated by five different people, using filling, crossing and
circling as annotation methods. No special care was given
to produce tidy annotations, as we tried to simulate how a
student might annotate the matrix. We experimented with
scanning resolutions of 200 and 300 DPI, giving us a
total of 296 samples. Using the described procedure and
the selection threshold of 0.5, we were able to achieve
100% recognition rate.

To further explore the impact of the selection threshold
on the recognition performance, we repeated all of the
experiments for the selection threshold values from 0 to
1 with the step 0.04. The results are presented on Figures
8 and 9.

As can be seen, for too small values of selection thresh-
old, recognition is unsuccessful, since in each column
more than one cell becomes selected, which leads to a
situation in which there are multiple candidates for a
digit. Since we do not have a recovery procedure, these
situations are fatal for recognition.

Figure 8: Performance of the proposed method.

Figure 9: The success ratio of the proposed method (the
number of correctly recognized samples divided by the
total number of samples).

By increasing the selection treshold, the success ratio
also increases. For the selection threshold greater or
equal to0.44, success ratio is 100%. If the recognition
procedure were guided only by the selection threshold,
after some additional threshold increase, the success ratio
would start to decrease, since no cell candidates would be
detected. However, as we previously described, situations
when no cell candidates are detected are handled by
computationally more expensive procedure of selecting
the cell with the highest black-pixel ratio and comparing
that ratio with the other unselected cells in the same row
to see if enough evidence can be collected to declare the
candidate selected. It is this fallback mechanism which
is responsible for the success ratio retaining its constant
value of 100% with the further increase of selection
threshold.

Based on these observations, we can take the selection
threshold of0.5 to be near-optimal choice by which many
cells are correctly recognized based only on the selection
threshold, and only a small number of cases requires
activation of the fallback procedure.

To determine the influence of auto-margin adjustment
(AM-procedure) and evidence-seeking for selecting can-
didate cells (ES-procedure) on the recognition success
ratio, we repeated the experiments with the procedures
turned on or off. Results when both of the procedures are
used are already presented on Fig. 9. The situation for
both procedures turned off, so that the recognition is only
steered by the selection threshold is presented on Fig. 10.
For the total range of selection threshold from 0 to 1, the
success ratio is never 100%. It reaches its maximal value
of 72% for the selection threshold of about 0.36 and then



Figure 10: The success ratio of the proposed method for
AM = off, ES = off.

Figure 11: The success ratio of the proposed method for
AM = on, ES = off.

starts to decline.

If we use only the AM-procedure, the success ratio
starts to rise rather early, and it reaches a maximal value
of 97% for the selection threshold of 0.24 after which it
oscillates for some time and then drops to 96%. For this
situation the success ratio never reaches 100%.

If we use only the ES-procedure, the success ratio starts
to rise from the selection threshold of about 0.30, and it
reaches maximal value of 96% for the selection threshold
0.44 after which it remains stable. For this situation the
success ratio never reaches 100%.

As these experiments show, only by using both proce-
dures we can obtain recognition success ratio of 100%.

The proposed method was implemented in Java within
an existing system for automated grading [5].

Figure 12: The success ratio of the proposed method for
AM = off, ES = on.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed the usage, the design and the
automatic recognition method of student ID matrices. Us-
ing this approach, formative assessments during lectures
can be completed in relatively short amount of time, while
assessments remain automatically processable.

We tested the procedure on images obtained by two
scanning resolutions and several annotation methods. Us-
ing a simple selection threshold method in conjuction
with two fallback procedures we were able to obtain the
recognition ratio of 100% .

It still remains to see how this matrix will be accepted
by students, and how intuitive it will be. This will be
tested in class during the second semester of the academic
year 2010/2011.
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