
University Course Timetabling Using ACO: A
Case Study on Laboratory Exercises

Vatroslav Dino Matijaš, Goran Molnar, Marko Čupić, Domagoj Jakobović, and
Bojana Dalbelo Bašić

Faculty of Electrical Engineering and Computing,
Unska 3, 10000 Zagreb, Croatia

University of Zagreb
dinomatijas@gmail.com, {goran.molnar2|marko.cupic|

domagoj.jakobovic|bojana.dalbelo-basic}@fer.hr

Abstract. The ant colony optimisation metaheuristic has shown promise
on simplified artificial instances of university course timetabling prob-
lems. However, limited work has been done applying it to practical
timetabling problems. In this paper, we describe the application of the
ant colony optimisation to a highly constrained real–world instance of
the university course timetabling problem. We present the design of the
memory–efficient construction graph and a sophisticated solution con-
struction procedure. The system devised here has been successfully used
for timetabling at the authors’ institution.

1 Introduction

Almost every type of human organisations is occasionally faced with some form
of timetabling tasks. The University Course Timetabling Problem (UCTP) and
its variations are parts of the larger class of timetabling and scheduling prob-
lems. A large number of university timetabling problems have been described in
the literature, and they differ from each other based on the type of institution
involved, the entities being scheduled and the constraints in the definition of the
problem.

Due to inherent complexity and variability of the problem, most real–world
timetabling problems are NP–complete [1]. This calls for use of heuristic algo-
rithms which do not guarantee an optimal solution but can usually generate
solutions that are good enough for practical use. Due to their manageability
and good performance (if properly implemented), metaheuristic techniques have
shown to be particularly suitable for solving these kinds of problems.

In this work1, we focus on the Laboratory Exercises Timetabling Problem
(LETP), framed as an example of the university course timetabling problem.
The work described is a part of the research on two different metaheuristics for

1 This work has been supported by the Ministry of Science, Education and Sports,
Republic of Croatia and under the grants No 036-1300646-1986 and

timetable construction: genetic algorithm [2] and ant colony optimisation meta-
heuristic. Constructing a system for solving instances of LETP is challenging
both technically and administratively. Along with the efficient timetable pro-
duction system, a feature–rich model of the timetable constraints is devised. It
is necessary for the system to be able to account for a complex set of constraints
because various departments at our institution have very different ideas about
what a good timetable should look like. The definition of LETP is devised in close
coordination with the departments and is constantly evolving. Therefore, a good
modular design that supports changes in the problem definition is necessary.

Our approach is based on the Ant Colony Optimisation metaheuristic (ACO),
proposed by Dorigo et al. [3]. It is a distributed stochastic probabilistic construc-
tive search procedure, inspired by the foraging behaviour of ants. It utilises a
problem representation in the form of a construction graph, on which suggested
solutions are constructed by artificial ants. ACO has already shown promise for
various timetabling applications. It has been successfully applied to various arti-
ficially generated UCTP datasets in [4, 5] and in [6] its performance is compared
with that of several other metaheuristics. ACO has also been applied to artifi-
cially generated instances of the examination timetabling problem, for example
in [7]. However, as noted in [8],

“A major identified weakness in the current approach to Operational
Research is described as follows: a gap still remains between the output of
a successful research project and what is needed for direct use by industry.
In general, the area of educational timetabling is one such area.”

Solving real such problems is a difficult task that involves modelling and handling
various kinds of constraints which are usually simplified in academic problems.
Moreover, only a few, relatively basic UCTP representations have been proposed
in literature for use with ACO. It has been shown that these representations do
not satisfy the requirements imposed by complex, large LETP instances.

This work is an effort to bridge this gap between the theory and practice
of automated timetabling and to build an ACO–based system that satisfies the
timetabling needs of our institution. The result of our work is an ACO–based
timetabling system suitable for practical use.

The remainder of this paper is organised as follows: Section 2 introduces the
actual timetabling problem, and in Section 3 we elaborate our approach. Section
4 presents the results, and Section 5 concludes the paper.

2 University Course Timetabling Problem

2.1 Problem Statement

The timetable construction problem is a combinatorial optimisation problem
that consists of four finite sets: (i) a set of meetings, (ii) a set of available
resources (e.g. rooms, staff, students), (iii) a set of available time–slots, and (iv)
a set of constraints. The problem is to assign resources and time slots to each

given meeting, while maintaining constraints satisfied to the highest possible
extent. The University Course Timetabling Problem (UCTP) is a timetabling
problem where the given data consists of a set of students and sets of courses that
each of the students needs to attend. A course is a set of events that need to take
place in the timetable. The main characteristic that distinguishes the university
course timetabling problem from other types of timetabling problems is the fact
that students are generally allowed to choose the courses in which they wish
to enrol [9]. A set of constraints is usually divided into hard constraints whose
violation makes the timetable suggestion infeasible, and soft constraints, rules
that improve the quality of timetables, but are allowed to be violated.

The above description of the UCTP defines a broad range of problems, whose
complexity significantly depends on the specific constraints defined. Particular
timetabling applications are usually focused on a more strictly defined subset
of the problems, as the constraints and dimensions of the problem vary among
institutions. We use the same approach, giving a detailed formal description of
the problems for which our application is designed.

2.2 Definition of Laboratory Exercise Timetabling Problem

The laboratory exercise timetabling problem is defined as a six–tuple:

LETP = (T, L,R,E, S,C) ,

where T is a set of time–quanta in which the scheduling is possible, L is a set of
limited assets present at the university, R is a set of rooms, E is a set of events
that need to be scheduled, S is a set of attending students, and C is a set of
constraints. We assume that the durations of all the events can be quantified as
multiples of a fixed value of time that we call a time–quantum. A time–slot is
defined as one or more consecutive time–quanta in the timetable. The duration
of the quantum reflects a trade–off between the precision of scheduling and the
size of the search space.

The set of limited assets (resources) shared among the different exercises is
denoted L. For each resource l ∈ L, a fixed number of workplaces can use the
resource concurrently.

Each room is defined as a set of workplaces, atomic room resources varying
from room to room, such as seats in ordinary classrooms, computers in computer
classrooms, etc. For each room r ∈ R, the number of workplaces, denoted sizer ∈
N is defined. For each of the events, the desired number of students per workplace
is defined. Since some rooms may not be available all the time, a set of time
quanta Tr ⊆ T in which the room is available is defined for each room.

Events have the following set of properties:

– Each event e has a duration, denoted dure ∈ N, a multiple of a time quantum.
– Each event e has an acceptable room set Re ⊆ R.
– Each event e has a suitable time quanta set, denoted Te ⊆ T .
– The set of limited assets used by the event is denoted Le ⊆ L.

– The number of staff available for each event and the number of staff needed
for event e when held in the room r are given. Because each of the de-
partments at our institution produces staff timetables independently of our
system, staff is not defined as a separate entity of the LETP.

– An ordering relation, denoted �d can be defined for a pair of events. The
relation e2 �d e1 is true if and only if e2 needs to be scheduled at least d
days after e1.

– The maximum number of rooms to be used concurrently for the event e can
be defined.

– An event timespan can be defined to ensure that all of the time–quanta in
which the event is scheduled are within a specified time interval.

– For each event e, the number of students per workplace is denoted spwe ∈ N.

The set S is the set of students that are to be scheduled. Each student s ∈ S
has the following set of properties: (i) a set of time quanta Ts ⊆ T when each
student s is free, and (ii) a non–empty set of events he or she needs to attend,
denoted Es ⊆ E.

The requirements of the courses are represented by a set of constraints C.
The constraints are divided into hard constraints Ch, which are essential for the
courses, and soft constraints Cs, which may require some manual intervention if
they are not met. Hard constraints Ch are defined as follows:

– All of the properties of limited assets, rooms, events and students need to
be satisfied in the timetable.

– Each room can only be occupied by one event at a time.
– Students can attend only one event at a time.
– Each event e occupies dure consecutive quanta of the room.
– At most sizer · spwe students can be placed in room r used for the event e.
– Enough teaching staff must be available to attend each event.

The set of soft constraints Cs contains one element: the students must attend
all the events they are enrolled in. Defining this constraint as soft may seem
irrational, but the reasoning behind this is as follows: ’hard’ constraints are
simply those that are satisfied at all times in any solution suggestion in our
implementation, whereas for the ’soft’ constraints this may not be the case. ’Soft’
constraints are defined as such because it was not known in advance whether
there even exists a solution that satisfies all the constraints (given the complex
requirements). In other words, our approach tries to find the best solution within
the imposed constraints and possibly to give a feedback to the course organisers
if some are still severely violated. In the remainder of the text, the term ’feasible
solution’ denotes a solution that satisfies at least the hard constraints as defined
above.

3 Solving LETP Using Ant Colony Optimisation

3.1 Construction Graph

The main issue in applying ACO to a problem is to find an appropriate rep-
resentation that can be used by the artificial ants to build solutions [3]. This

representation is called the construction graph. To ensure that the problem rep-
resentation is suitable for large instances of LETP, memory–efficiency is the
main design goal. The construction graph we devised can be seen in figure 1.
Semantically, each of the nodes represents one of the following: a student, an
event or a dock node. A dock is an ordered pair of the room and beginning time
in which an event can be scheduled, e.g., (ComputerLab-2, (2010-09-08, 10:00)).

An edge connecting a dock node and an event node means that the event
can be scheduled in that time and place. This means that the dock represents
the room and time that are suitable for that event. Dock nodes are connected
to student nodes as well. Student nodes are only connected to docks under the
following conditions: (i) the dock is connected to at least one of the events
the student needs to attend and (ii) the student is free from pre–assignments
in time–quanta represented by the dock and the dures consecutive time quanta.
The event es is the shortest event enrolled by the student that can be held in the
aforementioned dock, and its duration is denoted dures

. To each of the graph’s
edges, a pheromone concentration value τij and a heuristic information value
ηij are assigned. The LETP solution is a timetable with all of the events and
students scheduled into the appropriate docks. A candidate solution (timetable)
is represented as a subset of edges of the construction graph, connecting the
timetable building blocks into a specific timetable.

For larger problem instances, the size of the construction graph can be con-
siderable, and the efficiency of the search procedure strongly depends on the size
of the graph. To reduce the size of the search space, an additional preprocessing
step is performed. During that step, edges representing solution components of
poor quality are removed. More precisely, an edge is removed if the number of
students who can attend the corresponding event is less than 80% of the room
capacity. Note that this value may vary in different problem instances. In the
final step, all isolated docks are removed.

Hard constraints are included in the construction procedure through the
constraint fence layer. This layer dynamically masks the edges of the construction
graph that lead to infeasible solutions, based on each incomplete solution (partial
tour) of the ants. Thus, ants moving through the graph are producing only
feasible timetables. The construction graph is a very large structure, while the
constraint fence is a small and expandable one. Ants access the graph exclusively
through the constraint fence. They may move only on paths that are allowed
by the constraint fence, and they behave as if the edges that are not allowed by
the constraint fence did not exist at all. While the construction graph remains
constant throughout the execution time, each ant that is moving through the
graph is given its own instance of the constraint fence. The constraint fence
evaluates each edge based on the desired set of timetable constraints. Each of
the constraints from our library is implemented as an independent module. This
makes it easy to update the constraints and to add new ones if needed. The
computational cost of the constraint fence depends on the set of constraints
used. If used with our current library, its computational complexity is O(|R|),
where R is the set of rooms in the LETP instance.

Arti�cial Intelligence
exercise 1

Electrical Circuits
exercise

Databases
excercise 4

Room A101
Monday, April 21, 2008.

8:45 AM - quantum 3

Room D372
Wednesday, April 23, 2008.

6:00 AM - quantum 136

PC Lab 1
Friday, April 25, 2008

12:30 PM - quantum 210

Mechatronics laboratory,
Wednesday, April 30, 2008
11:00 PM - quantum 448

Student 1

Student 2

Student 3

Student 4

Student (n-1)

Event node

Dock node

Student node

Legend:

Student n

Mechatronics laboratory,
Friday, April 25, 2008

12:30 PM - quantum 210

Fig. 1. LETP construction graph. Edges represent partial assignments of students and
events to times and rooms. Note that the construction graph is not fully connected as
some of the edges are implicit and implemented in the tour construction procedure.

3.2 Algorithm Description

Our approach uses a MAX −MIN Ant System [3], since such systems have
shown great promise on various different problems, including artificially gener-
ated timetabling problems [5]. A colony of m ants is used. At each algorithm
iteration, each ant constructs a complete timetable (a candidate solution). In
each of the generated solutions, all of the hard constraints are satisfied.

In choosing solution components, the probability pkij that the ant k, currently
at node i will choose the node j is calculated using the random proportional rule
given by

pkij =
[τij]

α [ηij]
β

Σl∈Nk
i

[τil]
α [ηil]

β
, j ∈ N k

i , (1)

where τij is the pheromone trail value on the edge connecting node i to
node j, ηij is the heuristic value of that edge, α and β are the parameters which
determine the relative influence of pheromone trail and the heuristic information,
and N k

i is the feasible neighbourhood of ant k when it is at node i.
The pheromone trail between dock node i and event/student node j marks

the desirability of scheduling that event/student in that dock. In each algorithm
iteration only one of the ants updates the pheromone trails based on the quality
of the constructed solution candidate. The heuristic value ηij is controlled by

the constraint fence for each ant. It is important to note that the heuristic value
is dynamically modified throughout the algorithm execution. It is set to zero
when it is determined that the constraints of the problem would be violated if
the edge (i, j) were included in the the tour, and to one otherwise.

Solutions are constructed one event at a time and the scheduling of each event
is performed in two phases. In the first phase, the event is placed into suitable
rooms and time–slots. This is done by assigning a sufficient number of docks to
the event, one dock at a time, until a sufficient amount of room is reserved for
the event. The decision of which dock to assign to the event is a biased random
choice that is influenced by the pheromone trail in the feasible neighbourhood of
the event node. To determine the probability that an edge will be selected, the
random proportional rule is used. In the second phase of the scheduling of the
event, students are assigned to the docks chosen in the first phase. The decision of
which student is to be placed in which dock is also biased by the pheromone trails
deposited by previous ant generations, using the random proportional rule. After
a partial timetable for a single event is constructed, the ant constructs partial
timetables for all of the events that have not yet been scheduled. The order in
which the ants schedule the events is heuristically determined at the start of each
iteration of the algorithm, so that the events with more unscheduled students in
the best tour of the previous iteration have greater priority. Each of the solutions
proposed by the ants is improved using the local search routine. The local search
rearranges the students among the docks assigned to the same event. It tries to
find suitable docks for students that are not scheduled to the event they need to
attend. The search is performed by checking whether room can be made by for
an unscheduled student by switching one of the scheduled students into another
dock.

After the solution construction and local search is finished for all ants, each
of the solutions is evaluated. We define the penalty function as the total number
of unscheduled obligations in a candidate solution (the exact definition of an
obligation is given in Section 3.3). The number of unscheduled obligations is also
used as the optimised variable. After the evaluation, the pheromone updating
step is performed as described in the following subsection.

3.3 Pheromone Update

The pheromone trail value is updated at the end of each algorithm iteration.
The pheromone is updated by the best–so–far ant or the iteration–best ant. The
probability that the best–so–far ant is allowed to update the pheromone trail is
5%. Unlike usual ACO approaches, the pheromone gain value in our approach is
not the same for all of the edges of a single tour. Instead, the pheromone gain is
defined for each event individually. The quality value is assigned to each event
of the timetable by counting the number of obligations left unscheduled for that
event. The intention is to improve the search process by using the quality of the
solution components to determine the pheromone gain value for individual edges
in the solution suggestion.

Usually, more than one event can be scheduled in a single dock. Nevertheless,
after event e is scheduled in dock d, no other event can be scheduled into d.
Therefore, the quality of a partial schedule of a single event cannot be measured
without considering its influence on other events. For example, suppose that
event e1 can be scheduled in the set of docks {d0, d1, d2} and event e2 can be
scheduled only in dock d1. Dock d1 may seem to be appropriate for event e1 since
it would leave zero students that need to attend e1 unscheduled. However, this is
a very poor choice considering that d1 is the only suitable dock for e2, so assigning
it to e1 would leave all of the students who need to attend e2 unscheduled.
The level of influence between two events is modelled by the influence function
f : E × E → [0, 1]. When fa,b = 0, event a has no influence on event b, while
fa,b = 1 means that event a is scheduled in the entire set of docks suitable for
the event b. More formally, the influence of event a on b, denoted fa,b, is defined
as:

fa,b =
|chosenDa ∩Db|

|Db|
,

where chosenDa ⊆ Da is a subset of docks in which event a is scheduled in a
given suggested solution, and Db ⊆ D is the set of docks suitable for the event
b.

We use the number of unscheduled obligations as the optimised variable. An
obligation is defined as an assignment of a given student to one of the laboratory
exercises he or she needs to attend. In our problem representation, this is done by
assigning students to the dock nodes during the second phase of the construction
procedure for a single event, as described in Section 3.2. The solution quality
function Qe for the event e and the solution suggestion Sug is defined as:

Qe =
assignedObligations(e,Sug)

numberOfObligations(e)
· spaceEfficiency(e,Sug)3 ,

spaceEfficiency(e,Sug) =
[

assignedObligations(e,Sug)
reservedSeats(e,Sug)

]
.

The space efficiency factor ensures that better solutions use the dock space more
efficiently. The pheromone gain for each event ∆τe is given by

∆τe =

∑
ei∈E

(fe,ei ·Qei)

|E|

4

, e ∈ E .

The pheromone gain ∆τe is deposited on the edges of the tour connecting the
event e to the dock d and on the edges connecting a student s to any of the
docks in which the event is scheduled.

3.4 MAX −MIN Ant System Parameters

Several configurations of the metaheuristic were evaluated, and the best results
were achieved using the settings in Table 1. The pheromone values are initially

set to τmax. The pheromone trails are updated after each algorithm iteration,
as described in Section 3.3, and evaporation is used for each edge, according to
the rule τij ← (1− ρ) · τij .

Our system uses either 10000 iterations or penalty = 0 as the stop criteria.
To prevent stagnation, if the best solution found is not improved after 125 con-
secutive iterations, the pheromone trails are reset by setting pheromone value
on each edge back to τmax.

Table 1. Ant colony optimisation algorithm parameters

Parameter Value Parameter Value

number of ants (m) 5 ρ 0.02
α 1.0 τmax = 1/ρ 50
β 1.0 τmin 0.5

4 Results

The system described here was successfully applied to the laboratory exercises
timetabling problem at the authors’ institution. The performance of the algo-
rithm on several datasets is presented in Table 2. These problem instances have
different durations and widely varying numbers of events and attending stu-
dents. Two values, Se,s and Ts are given as measures of the problem instance
complexity. The student event sum, denoted Se,s, is defined as the aggregate
number of events that each of the students needs to attend. More formally,
Ss,e =

∑
s∈S |Es|, where Es is the set of events that student s needs to at-

tend. The timespan of the problem instance, denoted Ts, is defined as the
number of days on which the events need to be scheduled. For each dataset,
30 independent runs were performed, and each run was limited to one hour.
For the purpose of comparison, the maximum run–time limit is added to the
usual stop criteria described in Section 3.4. Note that these datasets are in-
stances of real–world timetabling problems that had appeared at our faculty.
Anonymised version of these datasets is publicly available for download at http:
//morgoth.zemris.fer.hr/jagenda. To illustrate the effectiveness of our ap-
proach, the results are compared with a GRASP technique (Table 2). The tested
GRASP technique uses a construction search (different from the search proce-
dure defined for our ants) to build solutions satisfying hard constraints, after
which a local search that optimises the schedule of students is performed. We
used the Mann–Whitney test to check the H0 hypothesis that the distribution
functions of the algorithm performances were the same for the results of both the
ACO and GRASP techniques. For each of the datasets, the p values were well
below 0.05. On each problem instance, with very high statistical significance, we
conclude that the ACO technique performs better than the GRASP technique.

Note that although the Genetic algorithm has also been applied to the LETP
problem as a part of a sister project at our institution [2], the performance of
these approaches cannot be directly compared since different quality measures
and optimised variables are used in these approaches.

Table 2. Algorithm performance on different laboratory exercise timetabling problem
instances.

ACO penalty median comparison

instance Ss,e Ts min max st.dev. (σ) ACO GRASP

C1 2104 5 66 150 23.31 102 330

C2 7081 9 1 14 3.46 8 71

C4 4868 5 5 73 12.42 13 125

C8 5430 4 34 146 31.00 58 190

C12 5934 5 32 78 9.31 41 333

In some problem instances, a solution where all students are scheduled could
not be found. This was usually caused by a constellation of conflicting events,
or events with infeasible requirements posed by the course organisers. In such
instances, the system is used as a tool for identifying the problematic events. In
practice, the process of scheduling is usually an iterative process of querying the
system for the best results, interpreting those results, and allowing the staff to
make informed decisions.

5 Conclusion

This paper presents a case study of applying ACO metaheuristic for solving a
complex large–scale timetabling problem at our institution. Our solution uses
a relatively general problem representation, suitable for different types of in-
stitutions. We present an innovative, memory–efficient problem representation
that is appropriate for large problem instances. Moreover, the modular design
of the constraint library facilitates the addition of new constraints. It makes
the system manageable, which is extremely important for practical timetabling
applications. The exact problem we are solving is formulated as the laboratory
exercise timetabling problem, a subset of the university course timetabling prob-
lem.

This work arose out of the specific timetabling needs of one institution. How-
ever, the approach described here is not limited to LETP, since it shares many
commonalities with other UCTP instances. Thus, it is likely that the challenges
we faced, such as reducing the memory footprint of the construction graph or
ensuring the ease of adaptation to problem modifications, will also be faced by
other researchers. Other authors may use our approach without modifying the

problem representation. The only necessary adaptation may be the implemen-
tation of additional constraints that are not supported by our current library.

Furthermore, since prior work on ant colony optimisation mainly consid-
ered artificially generated UCTP instances, our work proves that ACO can be
highly successful in solving real–world timetabling problems. It is an effort to
help bridge the gap between theoretical research and practical adaptation of
metaheuristic techniques that is currently so prevalent in the area of automated
timetabling. Our work can also be viewed as an additional confirmation that
ACO is not only an interesting academic research topic, but also a manageable
and efficient approach able to solve highly complex real–world problems.

References

1. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems.
In: Proceedings of the First International Conference on the Practice and Theory
of Automated Timetabling (ICPTAT ’95). (1995) 511–522

2. Bratković, Z., Herman, T., Omrčen, V., Čupić, M., Jakobović, D.: University course
timetabling with genetic algorithm: A laboratory excercises case study. In Cotta,
C., Cowling, P., eds.: Proceedings of EvoCOP 2009 - 9th European Conference
Evolutionary Computation in Combinatorial Optimization. Volume 5482 of Lecture
Notes in Computer Science., Springer, Heidelberg (2009) 240–251

3. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Books. The MIT Press
(july 2004)

4. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art. In: Proceedings of Evo-
COP 2003 – 3rd European Workshop on Evolutionary Computation in Combina-
torial Optimization. Volume 2611 of Lecture Notes in Computer Science., Springer
Verlag, Berlin, Germany (2003) 334–345

5. Socha, K., Knowles, J., Sampels, M.: A MAX -MIN Ant System for the University
Timetabling Problem. In Dorigo, M., G. Di Caro, Sampels, M., eds.: Proceedings of
ANTS 2002 – From Ant Colonies to Artificial Ants: Third International Workshop
on Ant Algorithms. Volume 2463 of Lecture Notes in Computer Science., Springer
Verlag, Berlin, Germany (September 2002) 1–13

6. Rossi-Doria, O., Sample, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L.,
Stützle, T.: A Comparison of the Performance of DifferentMetaheuristics on the
Timetabling Problem. In: The Practice and Theory of Automated Timetabling IV:
Revised Selected Papers from the 4th International conference, Gent 2002. Volume
2740 of Springer Lecture Notes in Computer Science., Springer, Berlin, Germany
(2003) 329–351

7. Azimi, Z.: Comparison of Methheuristic Algorithms for Examination Timetabling
Problem. Applied Mathematics and Computation 16(1) (2004) 337–354

8. McCollum, B.: University timetabling: Bridging the gap between research and prac-
tice. In E Burke, H.R., ed.: PATAT 2006 — Proceedings of the 6th international
conference on the Practice And Theory of Automated Timetabling, Masaryk Uni-
versity (2006) 15–35

9. Gross, J.L., Yellen, J.: A Handbook of Graph Theory. Discrete Mathematics and
Its Applications. CRC books (December 2003)

