
Ferko Project – Intelligent Support for Course Management at Faculty Level

M. Čupić and T. Franović
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

Phone: +385 1 6129 548 Fax: +385 1 6129 653 E-mail: Marko.Cupic@fer.hr, Tin.Franovic@fer.hr

Abstract – In this paper we discuss how computers can be
used to support faculty staff with regard to creating several
kinds of high-quality schedules, at faculty level.
Implementations of adequate evolutionary computation-
based algorithms are being developed as part of the Ferko
project. Various parts of the Ferko project have already been
is use for several years by thousands of students and faculty
staff members at the Faculty of Electrical Engineering and
Computing (FER).

I. INTRODUCTION

When talking about the role of computers in education,
today's mainstream research topics are focused on helping
students to learn by creating various formats of learning
materials (e-learning, m-learning, Intelligent Tutoring
Systems, etc.) and helping teachers to better assess
students knowledge (e-assessment systems providing
adaptive and intelligent assessments techniques). However,
even today, the majority of courses are still being taught in
classrooms, while assessments are still being conducted
on-campus under staff supervision. For all but small-sized
universities, creating high-quality lecture, assessment, and
laboratory exercise schedules poses a serious challenge.

Being part of faculty administration is definitely not an
easy job. This is even more so considering all the tasks
needed to be done in light of the new Bologna reform. Out
of all challenging tasks, we will single out several that are
performed at faculty level: creating a semestral lecture
schedule for all courses and enabling students to exchange
groups in case of conflicting schedules, creating weekly
laboratory schedules for all courses, creating assessment
schedules for all courses, and supporting course staff to
manage make-up or deferred exams more easily. With
regards to computational complexity, all of those problems
are combinatorial NP, and solving them by hand – even in
an attempt to obtain a best-effort quality schedule – is
unfeasible.

Fortunately, adequate algorithmic techniques have been
developed for dealing with NP class combinatorial
problems. Most prominent candidates are biologically
inspired meta-heuristics researched under the Evolutionary
Computation umbrella, such as Evolutionary Algorithms
(e.g. Genetic Algorithm) [1,2,3], Swarm Algorithms (e.g.
Particle Swarm Optimization and Ant Colony
Optimization) [4,5,6], Artificial Immune Systems [7,8,9],
and Differential Evolution Algorithms [10,11].

The goal of Ferko, a course management and support
system we are developing, is to improve the quality of
studying and to leverage faculty administration and course
staff of many of the common and tedious tasks. In this
paper, we present work carried out as part of the

development of Ferko, addressing most of the above-
mentioned problems by providing intelligent optimization
methods based on Evolutionary Computation algorithms,
capable of automatically producing good-quality
schedules. We comment on the performance of developed
algorithms, and discuss how they can be used to provide
an intelligent support for course management at faculty
level.

II. MOTIVATION

Since the alignment with the Bologna process five years
ago, the semestral schedule has been constantly adjusted,
in an attempt to enable the creation of better and stress-free
lecture, laboratory and assessment schedules (see Fig. 1).
The current semestral schedule is divided into three terms,
each having four or five weeks for lectures interwoven
with laboratory exercises, followed by two weeks of
assessments. At the end of the semester there is another
week reserved for make-up exams. This is depicted on Fig.
1.c.

The lecture schedule is created first. At the present time,
the lecture schedule for undergraduate students alternates
each week for most courses, but not all. For graduate
students, the lecture schedule is fixed. On both study levels
(undergraduate and graduate) course enrollment is based
strictly on prerequisites. Combined with the fact that there
are a number of elective courses in which a student may
enroll, all described results with a lecture schedule having
a certain number of students with conflicts. In order to
amend this, as part of Ferko, we have implemented a
lecture group market-place; a fully automated web-based
application where students can auction for a group which

Fig. 1. Several semestral structures for lectures (LECT),

midterm exams (ME), laboratory exercises (LAB) and final
exams (FE).

better suits them (they can offer their current group, and
perform the exchange by accepting other students'
offerings). This mechanism is implemented in a generic
way, so it is also used later for fine-tuning students'
laboratory exercise schedules.

Once the lecture schedule is completed, several tasks
must be performed. A schedule for midterm and final
exams must be created, as well as a make-up exams
schedule. Ideally, since each is scheduled in a two-week
period, schedules could be reused. Unfortunately, more
often than not, the three two-week periods are not equal
due to various holidays, so a schedule must be created for
each separately.

At the same time, in accordance with course-specific
requirements laboratory exercise schedules must be
created for each week separately.

Additionally, at single course level, some scheduled
events can be skipped (either due to faculty staff or student
absence), so a make-up event must be scheduled without
causing conflicts with other student assignments. This is
not a problem when the number of students is small, but
can be very difficult otherwise.

In order to provide support for all of the described
activities conducted after the initial creation of a lecture
schedule, we implemented a number of algorithms and
systems which are described in the following sections.

III. LABORATORY EXERCISE SCHEDULE

There are several reasons why the creation of a
laboratory exercise schedule is inherently hard. First and
foremost, a course can be enrolled at the same time by
students simultaneously enrolled in many other courses,
each with its own lecture schedule (which possibly
alternates). So a laboratory exercise schedule must be
created in a way which does not introduce new conflicts
with previously scheduled obligations. For a course staff
member to handle such a problem it would require taking
into consideration previously defined schedules for each
enrolled student, and trying to produce a non-conflicting
laboratory schedule. Additionally, this would require some
kind of coordination among various courses, in order to
avoid a situation in which two or more courses
simultaneously produce laboratory schedules which are
non-conflicting with previously scheduled students'
obligations but are conflicting mutually.

The other difficulties arise from the fact that different
courses require different kinds of laboratory rooms
(computer-equipped rooms, electronic labs, etc) whose
availability is limited, and that some courses share licensed
software for which there is a fixed and limited number of
licenses available. More often than not, the number of
available course staff members is small, which also
prohibits the creation of schedules in which there are many
laboratory rooms simultaneously scheduled to the same
course, etc. Taking all of the before-mentioned constraints
into consideration, it is better to allow each course to
provide its laboratory requirements, and then to centrally
create a schedule for all courses at the same time.

In an effort to support this, a web application has been
created in which for each course, a course staff member
can enter all of the requirements, which are briefly
summarized as follows:

• the number of laboratory exercises in a given week
(can be more than one, but occurs rarely),

• the duration of each laboratory exercises (it is
typically between half an hour and four hours),

• a selection of students for each exercise (typically,
all enrolled students),

• a set of laboratory rooms acceptable for each
exercise,

• the number of students that can be placed in each
room (room capacity is dependent on the course
and type of laboratory exercise),

• the number of course staff members needed to be
assigned to each room,

• the number of course staff members available for
each laboratory exercise,

• laboratory exercise ordering (in case that more than
one exercise for same course should be scheduled
in the same week),

• laboratory exercise spacing (in case that more than
one exercise for same course should be scheduled
in the same week, this is the minimal amount of
time enforced between the end of one exercise and
the beginning of another),

• acceptable time-span for course laboratory
exercises (e.g. a time-span of 2 days would require
that if the laboratory exercises for the first group of
a specific course start on Monday, the last group of
students for the same exercise should be scheduled
no later than on Tuesday).

A number of other constraints are also available, but
will not be mentioned here.

Once the requirements are entered, centralized
scheduling is started. Schedules are created separately for
each week, since not all of the courses have laboratory
exercises every week.

To create a schedule, requirements are collected from
the web application, and then used by two implementations
of scheduling algorithms. The first one is based on the
hybrid Genetic Algorithm described in [12] and the second
one is based on the Ant Colony Optimization algorithm.
The GA-based algorithm in all candidate-schedules always
assigns all students to laboratory exercises, even if such an
assignment creates conflicts. For that reason, we say that
the GA-based implementation has found a good schedule
when the number of conflicts becomes zero. The ACO-
based implementation, on the other hand, creates schedules
in which students are assigned to a laboratory exercise
only if such an assignment will not create a conflict. So the
quality of the schedule is measured by the number of
unassigned students. A typical run of the ACO-based
algorithm is shown on Fig. 2. Sudden worsening at
approximate time 6000 is result of algorithm restart due to
detected stagnation, and is normal for this implementation.
On the same figure there is also depicted a strong influence
of the implemented local search method on schedule
quality.

The parallelization of schedule creation, at the present
time, is trivial: the algorithms are started on several
computers, and usually left running during night. Then, the
best found solution is used and inspected. If anomalies are
found (e.g. scattered room assignments), the specification
is adjusted, and the process is repeated until a satisfactory
schedule is obtained. For weeks in which laboratory

schedules must be created for many large courses (e.g. for
a total of 25 courses), it is often impossible to find ones
without conflicts with the lecture schedule. In that case, a
schedule with the minimal number of conflicts is used.
However, it should be noted that in that case the number of
remaining conflicts is reasonably small. In case that the
number of conflicts can not be lowered to an acceptable
amount, problematic conflict-causing courses are
identified, and in cooperation with course staff members
the requirements are adjusted so that a low-conflict (or no-
conflict) schedule can be created. One often identified
source of conflicts is a densely constrained specification
for long duration exercises (e.g. exercises constrained to
only two days in a week, with duration of four hours).
Once this is identified as a conflict source, simply allowing
the algorithm to use more than just two days in a week
usually resolves the issue. For reasonably simple
schedules, the algorithm run is typically over in several
minutes (up to half an hour). However, when dealing with
many courses, it is typically run for 12 to 24 hours.

Finally, once the schedule is created, it is published in
course calendars and students' personal calendars in Ferko.
Then, course staff members can enable the usage of the
market place for the scheduled laboratory group, allowing
students to exchange scheduled terms and thus creating for
themselves even higher quality schedules.

IV. TEAM SCHEDULING

One of the notorious problems, when dealing with
scheduling, is the fact that there is no universal scheduler.
Each course will have its own peculiarities, and for the
majority, a framework can be created which is expressive
enough (but at the same time efficient) to encompass them
– but not all of them.

One such peculiarity is team scheduling. Our currently
implemented laboratory exercise scheduler does not have
built-in support for teams, so a new specialized scheduler
was implemented, in order to provide us with team-
centered scheduling capabilities. We will define a team as
a predetermined group of students which must be
scheduled atomically. Depending from course to course, in
a laboratory room a team can occupy only one place, or as
many places as there are students in it. An additional
request came from one of the courses which needed a
laboratory schedule: teams also have a predetermined
course staff member. However, since the number of course
staff members is smaller than the number of teams,
multiple teams are assigned to each staff member.

Bearing this in mind, a laboratory schedule must be
created for that course, so that there are no conflicts with
the lecture schedule, and no conflicts with previously
created laboratory exercise schedules for the majority of
"regular" courses. Additionally, two teams being assigned
to the same course staff member cannot be scheduled at
the same time.

To cope with those requirements, a scheduler
implementation was created, based on the Clonal Selection
Algorithm [7,8,9] (a member of Artificial Immune
Algorithms). This implementation was successfully used to
create a schedule for three laboratory exercises. The work
of the algorithm used to schedule 47 teams in a single day
is illustrated on Fig. 3. In this case, the average number of
students per team was 8, and there were only 5 course staff

members, each having an average of 9 teams. The quality
of the schedule is measured as a total number of
conflicting minutes among the created schedule and the
previously created lecture schedule and laboratory
schedules, for the scheduled students. The algorithm
quickly satisfies all of the hard constraints (e.g. that two
teams being assigned to the same course staff member
cannot be scheduled simultaneously), so we plotted only
conflicting minutes. The best found solution had 330
minutes of conflicts with previously created schedules
(only 11 conflicting students).

Fig. 2. Typical run of ACO-based laboratory exercise

scheduler, and influence of local search on performance.

Three runs depicted on Fig. 3. illustrate a run with no
local search, a run with local search applied only to the
current best schedule, and a run with local search applied
to the current best schedule as well as to 1% of the other
created schedules. It is clearly visible that the last scenario
gives the best results.

V. MAKE-UP ASSIGNMENTS SCHEDULING

The FerSched system is a Ferko module developed in
order to assist course staff members in creating students’
schedules for make-up assignments. The make-up
assignments include laboratory exercises, lectures, quizzes,
etc. The system consists of two main components: a Java
applet [13] for the definition of schedules, and a locally
runnable application which creates the schedules from the
input data.

The applet is a component of the Ferko system, and
enables the user to define in detail the constraints of each
schedule that is to be created. It is possible to define the
constraints on three levels: the plan, event and term levels.
Each level allows the user to define three main constraints:
the available students, time spans and rooms. If a
constraint is defined on one of the levels, it is locked and

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900

no local search
local search on best

local search 1%

Fig. 3. Schedule quality for team scheduler, and

influence of local search method.

cannot be defined on any of the other two levels.
The laboratory exercises for demonstrators for the

Digital logics course could serve as an illustrative
example. Firstly, the user defines all the students on the
plan level (in the example, there are 51 of them). The time
span can as well be defined on the plan level, since both
events should occur in the same week. Secondly, the user
creates two events: the Theory event, and the Practice
event. Then, it is necessary to define the durations of both
events (2 hours for Theory, and 1 hour for Practice), and
the preconditions (Theory must occur at least 1 day before
Practice). The next step is to define the available rooms for
each of the events (we can limit the room capacity for the
rooms assigned to Practice to 18 students, in order to avoid
overcrowding). Finally, the user selects the given
distribution (to be explained later) for both events, and
selects 1 term for Theory, and 3 for Practice. After
following these steps, the user has created a valid plan,
which is ready for processing.

The plan level represents the schedule as a whole, and
every solution is eventually presented in form of a plan.
Each plan consists of a number of events. An event is one
make-up assignment and has its own duration, distribution
and preconditions. A term is a realization of an event,
meaning that it is uniquely defined by its start time and
duration, room, and a list of assigned students.

The plan level offers the user the possibility to define
only the main constraints, which are then transferred to
each of the events. The event level offers the possibility of
defining more constraints, apart from the main ones. These
constraints include the duration, distribution and
precondition of the event. The duration defines the
maximum duration of each term representing the event.
The distribution can be random or given. A random
distribution enables the user to define the minimal and
maximal number of terms, while the given distribution
offers the possibility to manually create a number of terms
for the event and define term constraints. The
preconditions determine the events which must occur
before this event, and the time margin between events. The
term level, similarly to the plan level, allows only the
definition of the main constraints.

After the successful definition of a schedule, the applet
extracts from Ferko the data containing information about
student and room occupancies and creates an executable
Java application (.jar) which creates the schedule.

The schedule creation application processes the
occupancy data provided from Ferko and attempts to
create a valid schedule (the term will be defined later in the
text) with the aid of evolutionary algorithms. The
algorithms implemented in the application are as follows:
Bee Colony Optimization [14], Clonal Selection Algorithm
[15], Genetic Algorithm [12], Harmony Search [16],
Particle Swarm Optimization [17] and Stochastic Diffusion
Search [18].

All of the algorithms implement the same interface
which enables them to easily exchange temporary
solutions. Solution exchange is a mechanism which
provides the algorithms with quality solutions which
enhance and diversify their population. The algorithm
which is to execute the next iteration of the schedule

generation process is randomly chosen based on roulette
wheel selection, where the intervals corresponding to
every algorithm are set by the user when starting the
schedule generation process.

During the process, the user is provided progress
feedback by means of a JFreeChart [19] bar chart (as
shown in Fig. 4) whose bars represent each of the
following constraints: unsatisfied preconditions, room
conflicts, student conflicts, overcrowded rooms, number of
terms and vacant places. The constraints are divided into
hard and soft constraints. The hard constraints (unsatisfied
preconditions, room and students conflicts and
overcrowded rooms) represent the constraints which must
be satisfied in order for the schedule to be valid. The
remaining two constraints are a measure of optimality of
the solution. The student and room conflicts are presented
in units denoting the number of 15 minute intervals where
conflicts exist.

When the user is satisfied with the result shown as
feedback on the screen, he can stop the process, and is then
provided with an overview of the schedule, including the
remaining student conflicts in case a valid schedule could
not be generated. The user is also offered the option to
export the generated schedule into XML, which is then
transferred to Ferko in order to create a new student
assignment.

Fig. 5 shows a graph representing the change in
constraint values through iterations. The most notable
decrease is present in the number of student conflicts,
which decreases exponentially.

The algorithms which have proved to work successfully
together in terms of solution exchange are the Genetic
Algorithm, Clonal Selection Algorithm and Harmony
Search. The remaining algorithms have longer
initialization times, and thus produce better results when
used alone.

As far as the conducted tests show, the algorithms are
relatively successful in schedule creation. The distribution
of 51 students in 2 events, having 1 and 3 terms,
respectively takes approximately 8 seconds to complete,
while a schedule containing more than 600 students and 4
events with 4 terms each presents a notable decrease in
conflicts in approximately 45 seconds.

Fig. 4. An example of the feedback provided to the user

during FerSched schedule creation.

VI. EXAMINATION SCHEDULING

One of the most challenging scheduling problems is to

produce a high-quality exam schedule (often referred to as
examination timetable). This is particularly important since
at the present time, all schedules are condensed in two-
week periods, and for students those are highly stressful
times. Since the final grades are generated by ranking,
each score counts, and it is not enough to solve the exams
well – for an excellent grade it is important to solve it
better than most of the other students. Also, frequently
there are thresholds on midterm exams and final exams;
students who fail to achieve the threshold fail the course
completely. They get another chance on make-up exams,
but a student that fails two thresholds on the same course
automatically fails the course and prolongs the study for
another year.

So in order to produce a high-quality schedule, it is not
enough to only ensure that all students can attend to all
scheduled exams for the enrolled courses (this we will
proclaim to be a hard constraint). It is of paramount
importance for a student to have equally distributed exams
throughout the examination weeks. Namely, everyone can
have a bad day – but on that day, ideally, there should be
no more than one exam scheduled. And if possible, the day
after that, there should be no exams either. So having those
ideas in mind, we defined the following hard constraints:
• no exams should be scheduled at the same time if

they share enrolled students (student conflicts),
• for each available term, multiple course exams can

be scheduled, but term capacity cannot be
exceeded,

and the following soft constraints:
• it is bad for a student to have more than one exam

on the same day,
• it is bad for a student to have more exams on two

(or more) successive days.
Soft-constraints are handled by multiplying the number

of violations with the appropriate factor, and then
summing it up. The goal of scheduling is to find such a
timetable (which satisfies all of the hard constraints) from
a set of all valid timetables which has the best quality
(minimal violation sum).

To tackle this problem, we have developed two
implementations. One is based on Genetic Algorithm [20],
and the other one on Ant Colony Optimization. At our
institution, exam schedules created this way have now
been in use for two years. Two exam weeks are separated
in a total of 40 non-overlapping terms in which around 130
courses are scheduled.

Fig. 5. Constraint change through iterations during a

single run of FerSched schedule creation.

A typical run of both schedulers is shown on Fig. 6. As
we can see, there is almost no difference among the
average run of the GA-based scheduler and the ACO-
based scheduler. The quality of the obtained schedules is
also reasonably high. Just as an illustration, the majority of
students on the first year of the undergraduate study
program are enrolled in five courses, and the created
schedule had exams distributed on Wednesday and Friday
of the first week, and on Monday, Wednesday and Friday
of the second week. While talking to students on schedule
quality, many of them said that not all course exams are
equally difficult, and that in order to produce even better
schedules, this kind of information (subjective or
perceived exam difficulty) should be taken into account,
and this is something we are currently trying to implement.

Make-up exams (scheduled at the end of semester)
require separate handling. Since the available time is only
half of the time available for the final exams, courses are
scheduled more densely. However, considering the fact
that only a moderately small number of students are
actually present on make-up exams, this is not a problem.
During the make-up exam scheduling, a care must be taken
not to schedule a make-up exam for a course too close to
the final exam of the same course.

An additional challenge we are introducing this
semester is a fully automated exam timetable with
automatically allocated exam rooms. This is a shift from
"seeing a term as something capable of accepting 1000
students" to "seeing a term as a collection of a number of
rooms each with its own capacity". It might seem that there
is nothing new here. However, looking from this
perspective, we can now additionally try to create such a
schedule that requires a globally minimal number of
course staff members, and even better, to allocate rooms
from several buildings in such a way to try to ensure
minimal distance for a course staff member visiting all
allocated rooms cyclically and answering to students'
questions. If five courses are scheduled in the same term,
solutions to five Travelling Salesperson Problems (TSPs)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60

GA based scheduler
ACO based scheduler

Fig. 6. The quality at typical run of GA-based and

ACO-based exam scheduler implementations (sum of
weighted soft constraint violations)

should be found, just to compare two schedules. Combined
with the fact that there are courses requiring allocation of
twenty or more rooms, and that TSPs are NP-hard
combinatorial problems, a simplification is being
developed, that will not produce optimally short routes, but
still acceptable ones.

VII. CONCLUSION AND FUTURE WORK

In this paper we have described a number of situations
constantly being presented to faculty staff members which
are, in fact, various cases of scheduling problems.
Formally, most of those problems are, from the
computation complexity point of view combinatorial NP-
hard problems.

 As part of the Ferko project a number of algorithms are
being developed in order to tackle those problems and to
help create better conditions for students and faculty and
course staff. Some of those algorithms are presented in this
paper.

It is important to stress that schedules created this way
significantly helped us to conduct the alignment with the
Bologna process, to organize laboratory exercises in
prerequisite based course-enrollment and to try to create
better and less-stressful exam timetables.

At a single course level, significant efforts were also
made in order to help course staff to better and more easily
organize all course-related events. Specifically, algorithms
were developed and integrated into Ferko which now
allow course staff members to relatively easily schedule
various kinds of make-up assignments without causing
conflicts with previously scheduled students' obligations.

As part of future work, there is much room left for
enhancements: either from the standpoint of
expressiveness, or from the standpoint of efficiency,
quality, and better and more usable integration with Ferko.
All of those are areas of future research.

ACKNOWLEDGMENT

The authors would like to acknowledge the students
Mihej Komar and Toni Pivčević for their work on the
application for gathering laboratory schedule
specifications, the students Zlatko Bratković, Tomislav
Herman, Vjera Omrčen, Vatroslav Dino Matijaš and
Goran Molnar for their work on the laboratory schedulers,
the team of students who created the FerSched module,
and all the others participating in the development of
Ferko.

REFERENCES

 [1] K. A. De Jong, Evolutionary Computation, MIT Press,
Cambridge, 2006.

 [2] K. Deb, Multi-Objective Optimization using Evolutionary
Algorithms, Wiley, New York, 2009.

 [3] M. Affenzeller and S. Wagner, Genetic Algorithms and
Genetic Programming, Modern Concepts and Practical
Applications, CRC Press, Boca Raton, 2009.

 [4] R.C. Eberhart and J. Kennedy. "A new optimizer using
particle swarm theory", Proceedings of the Sixth

International Symposium on Micro Machine and Human
Science, Nagoya, Japan, pp. 39-43, 1995.

 [5] M. A. Montes de Oca, T. Stützle, M. Birattari, and M.
Dorigo. "Frankenstein's PSO: A Composite Particle Swarm
Optimization Algorithm", IEEE Trans. on Evolutionary
Computation. 13(5):1120-1132, 2009.

 [6] M. Dorigo, and T. Stützle. Ant Colony Optimization. MIT
Press, Cambridge, MA, 2004.

 [7] L.N. de Castro and F.J. Von Zuben, "The Clonal Selection
Algorithm with Engineering Applications", Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO '00), Workshop on Artificial Immune Systems
and Their Applications, Las Vegas, Nevada, USA, pp. 36-
37, 2000.

 [8] L.N. de Castro and J. Timmis. Artificial Immune Systems:
A new computational intelligence approach, Great Britain:
Springer-Verlag, 2002.

 [9] V. Cutello and G. Nicosia. "Chapter VI. The Clonal
Selection Principle for In Silico and In Vitro Computing",
Recent Developments in Biologically Inspired Computing,
eds. Leandro Nunes de Castro and Fernando J. Von Zuben.
Hershey, London, Melbourne, Singapore: Idea Group
Publishing, pp. 104-146., 2005.

[10] V. Feoktistov, Differential Evolution. In Search of
Solutions., Springer, New York, 2006.

[11] K.V. Price, R.M. Storn, J.A.Lampinen, Differential
Evolution. A practical Approach to Global Optimization.
Springer-Verlag, Berlin, 2005.

[12] Z. Bratković, T. Herman, V. Omrčen, M. Čupić, D.
Jakobović. "University Course Timetabling with Genetic
Algorithm: a Laboratory Excercises Case Study". In:
Proceedings of the 9th European Conference, EVO COP
2009, Tübingen, Germany, 2009.

[13] Java Applet Technology, http://java.sun.com/applets/
[14] C. Chong, M.H. Low, A. Sivakumar, K. Gay: "A bee

colony optimization algorithm to job shop scheduling". In:
Proceedings of the 2006 Winter Simulation Conference,
Monterey, CA USA (2006) 1954–1961

[15] J. Brownlee: "The Clonal Selection Classification
Algorithm (CSCA)". In: Tech. Report 2-01, Centre for
Intelligent Systems and Complex Processes, Faculty of
Information and Communication Technologies, Swinburne
University of Technology, Victoria, Australia, (2005)

[16] Z.W. Geem, Music-inspired Harmony Search Algorithm
Theory and Applications. Springer-Verlag, Germany, 2009.

[17] M. Clerc: "The swarm and the queen: towards a
deterministic and adaptive particle swarm optimization".
In: Proceedings of the I999 ICEC, Washington, DC USA,
1951-1957, 1999.

[18] K.D. Meyer, S.J. Nasut, M. Bishop: "Stochastic diffusion
search: Partial function evaluation in swarm intelligence
dynamic optimization". In: Abraham, A., Grosan, C.,
Ramos, V., eds.: Studies in Computational Intelligence.
Volume 31. Springer-Verlag, Germany, 2006.

[19] JFreeChart, http://www.jfree.org/jfreechart/
[20] M. Čupić, M. Golub, D. Jakobović. "Exam Timetabling

Using Genetic Algorithm". Proceedings of the 31st
International Conference on Information Technology
Interfaces, University Computing Centre, SRCE, 357-362,
2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

