
University Course Timetabling with Genetic
Algorithm: a Laboratory Excercises Case Study

Z. Bratković, T. Herman, V. Omrčen, M. Čupić, D. Jakobović

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{zlatko.bratkovic;tomislav.herman;vjera.omrcen;

marko.cupic;domagoj.jakobovic}@fer.hr

Abstract. This paper describes the application of a hybrid genetic al-
gorithm to a real-world instance of the university course timetabling
problem. We address the timetabling of laboratory exercises in a highly
constrained environment, for which a formal definition is given. Solution
representation technique appropriate to the problem is defined, along
with associated genetic operators and a local search algorithm. The ap-
proach presented in the paper has been successfully used for timetabling
at the authors’ institution and it was capable of generating timetables
for complex problem instances.

1 Introduction

The university timetabling problem and its variations are a part of the larger
class of timetabling and scheduling problems. The aim in timetabling is to find
an assignment of entities to a limited number of resources while satisfying all
the constraints. Two forms of university timetabling problems may be recognized
in today’s literature: examination timetabling and course timetabling problems,
where the differences between those types usually depend on the university in-
volved. The problem can be further specialized as either post enrollment based
or curriculum based. In post enrollment problems, the timetable must be con-
structed in such a way that all students can attend the events on which they are
enrolled, whereas in curriculum problems the constraints are defined according
to the university curricula and not based on enrollment data.

Due to inherent problem complexity and variability, most of the real-world
university timetabling problems are NP-complete. This calls for the use of heuris-
tic algorithms that do not guarantee an optimal solution, but are in many cases
able to produce a solution that is "good enough" for practical purposes. It has
been previously shown that metaheuristic-based techniques (such as evolution-
ary algorithms, tabu-search etc.) are especially well suited for solving these kinds
of problems, and this work is an example of that approach.

The paper focuses on a laboratory exercise timetabling problem (LETP),
which we define as a type of university course timetabling problem (UCTP).
The motivation for this work emerged from a need for automated timetable
generation at the authors’ institution. The timetables could no longer be con-
structed using traditional methods due to the increased complexity caused by

teaching curriculum reforms. The work described here is a part of the research of
two different metaheuristics for timetable construction: genetic algorithm (GA)
and ant colony optimization (ACO). In this paper we give a formal definition
of the LETP problem and apply a hybrid genetic algorithm to solve real-world
instances of the problem. The main contributions of the paper are the definition
of solution representation and genetic operators that are tailored to the complex
set of timetable constraints, as well as a local search algorithm for additional so-
lution refinement. The result is a GA-based system, capable of producing usable
timetables, that is highly adaptive to various idiosyncratic requirements that
may be imposed by a particular institution.

A concise overview of some general trends in automated timetabling can be
found in [1–5]. Many university course timetabling problems in literature have
been intentionally simplified, since real-world examples hold numerous features
that make algorithm implementation and performance tracking complicated. A
general trend that can be noticed in recent years is that the research focuses on
metaheuristic algorithms, instead of application-specific heuristics [2, 5, 3].

While there is ample research based on simplified artificial problem instances
[6–10], we were unable to find an approach that would encompass the require-
ments imposed by post-enrollment laboratory exercises timetabling, particularly
when applied to a large number of students and courses. Since the complexity of
the problem significantly depends on the defined constraints [11, 12], we present
a variant of the problem with additional characteristics which are particularly
suited for laboratory timetabling.

The remainder of this paper is organized as follows: Section 2 introduces the
actual timetabling problem and in Section 3 we elaborate our approach. Section
4 presents the results while Section 5 concludes the paper and discusses future
work.

2 University Course Timetabling Problem

2.1 Problem Statement

Timetable construction is an NP-complete combinatorial optimization problem
[13] that consists of four finite sets: a set of meetings, a set of available resources
(e.g., rooms, staff, students), a set of available time slots and a set of constraints.
The problem is to assign resources and time slots to each given meeting, while
maintaining constraints satisfied to the highest possible extent. University course
timetabling problem (UCTP) is a timetabling problem where a set of courses and
a set of attending courses for each of the students is defined, a course being a set
of events that need to take place in the timetable. The main characteristic that
discriminates the university course timetabling from other types of timetabling
problems is the fact that students are generally allowed to choose courses they
wish to enroll [14]. A set of constraints is usually divided into hard constraints,
whose violation makes the timetable suggestion infeasible, and soft constraints,
rules that improve the quality of timetables, but are allowed to be violated.

Since this description of UCTP usually does not cover all the requirements
imposed by a particular institution, we define additional elements of the problem
which allow its application to more specific timetabling instances. The presented
model was used for organizing laboratory exercises at the authors’ institution,
but it can also be used to describe various instances of course timetabling.

2.2 Laboratory Exercise Timetabling Problem

We define the laboratory exercise timetabling problem (LETP) as a six-tuple:

LETP = (T,L,R, E, S,C) ,

where T is a set of time quanta in which the scheduling is possible, L is a set of
limited assets present at university, R is a set of rooms, E is a set of events that
need scheduling, S is a set of attending students, and C is a set of constraints.

– A set of time quanta in which scheduling the exercises is possible is denoted
T . We assume that the durations of all the exercises can be quantified as a
multiple of a fixed time interval, a time quantum, denoted tq. A time slot
is defined as one or more consecutive time quanta in the timetable. When
choosing the duration of the quantum, one needs to make a trade-off between
finer granularity of scheduling in time and the larger size of the search space.
In all of the examples below, we will assume that the quantum duration is
15 minutes and the exercises can be scheduled between 8:00 and 20:00.

– A set of all the limited assets (resources) available for laboratory exercises
is denoted L. One can concieve assets that are required for many different
laboratory exercises, but are available in only limited amounts. For example,
a laboratory exercise may use a commercial software package, but university
can be in possession of only a limited number of licenses. This limits the
concurrency of laboratory exercises, as the assets are shared among various
courses. For each resource l ∈ L, a quantity, denoted quantity l, is defined
as the number of workplaces that can use the resource concurrently.

– With each room, we associate a pair of properties: (sizer, Tr), sizer ∈ N,
Tr ⊆ T , defined as follows:
• The workplace is defined as an atomic room resource varying from room

to room, such as seats in ordinary classrooms, computers in computer
classrooms, etc. For each room r ∈ R, the number of workplaces, denoted
sizer ∈ N, is defined.

• The rooms required for laboratory exercises could be used for other ed-
ucational purposes such as exams or lectures. Therefore, for each room
r ∈ R a set of time quanta in which the room is not occupied, denoted
Tr ⊆ T is defined.

– Event e ∈ E is defined as a single laboratory exercise of a course. A single
event may be scheduled in one or more event instances in different time slots.
For example, one instance of the event may be held at 8:00-9:00 on Monday
(for one group of students) and the other at 10:00-11:00 on Tuesday (for the
rest of the students). Each event has a set of properties defined as follows:

• Each event e has a duration, denoted dure ∈ N, defined as a multiple of
time quanta. For example, the event "Artificial Intelligence exercise 1"
may have a duration of durAI = 4 quanta, or 60 minutes.

• Event timespan, denoted spane ∈ N, can be defined to ensure that all
instances of the event are scheduled within a specified time interval. It is
defined as a difference between the end time of the last instance and the
start time of the first instance of the event. For example, let us consider
an exercise whose part is a brief quiz. To ensure fairness of the test for
all students, the staff may demand that all instances of the exercise have
to take place within one day (or, even more restrictive, within a certain
number of consecutive time quanta).

• The events may take place in different types of rooms, varying from
computer classrooms to specialized electronic or electrical engineering
laboratories. Hence, for each event the acceptable room set Re ⊆ R is
defined.

• For each event e, a nonempty subset of suitable time quanta, denoted
Te ⊆ T can be defined. For example, the staff of a course may demand
events to be scheduled only on Wednesday and Friday, due to the organ-
isation issues.

• Certain events may require the use of one or more limited assets. The
set of assets used by the event is denoted Le ⊆ L.

• Usually, members of teaching staff are present at events in order to help
the students carry out the exercise. The number of staff present may
depend on the event and the room the event is held in. The staff can
be viewed as a form of limited asset of an event. The number of staff
available for event e is denoted staffe ∈ N. The value usagee,r is defined
as the number of teaching staff used for event e being scheduled at room
r. The usage is undefined for r /∈ Re.

• A maximum number of rooms used concurrently for an event, denoted
roomse ∈ N, can be defined.

• Some pairs of events may require a partial ordering relation between
them. This requirement is apparent in courses with exercises that build
on top of each other. For example, event "AI exercise 1" and event "AI
exercise 2" need to be scheduled in the same week, but it must be ensured
that the second event is scheduled after the first. Also, the students must
have at least one whole day between these exercises to prepare properly.
A relation, denoted �d can be defined for a pair of events, �d: E × E.
The events are in relation e2 �d e1 iff each instance of e2 is scheduled at
least d days after the last instance of event e1.

• For each event, the number of students per workplace, denoted spwe ∈ N
is defined. For example, the staff of some courses may prefer that students
in computer classrooms do their exercise on their own, and other prefer
group-work, allowing two or more students per workplace.

– Set S is the set of students that are to be scheduled. Each student s ∈ S has
a set of properties defined as follows:

• As the students are required to attend lectures and exams along with
the exercises, it is not possible to assume that the student will always
be available for the event. Thus, for each student a set of time quanta
when the student is free Ts ⊆ T is defined.

• Depending on the student’s selection of enrolled courses, the student is
required to attend a nonempty set of events, denoted Es ⊆ E.

– The requirements of the courses are represented in a set of constraints C.
The constraints are divided into hard constraints Ch, which are essential
for the courses, and soft constraints Cs, which may require some manual
intervention if they are not met. Hard constraints Ch are defined as follows:

• The room can be occupied by at most one event at any time.
• The room must be free for use at the time scheduled.
• Event can be placed only in a room r ∈ Re that is suitable for that event.
• The room r, when used for event e, can accommodate no more than

sizer · spwe students.
• Event e can be held only at the time defined as suitable for that event.
• When the event e is placed in a schedule, it occupies the consecutive

dure quanta belonging to the same day, dure being the duration of the
event e.

• Event e must be scheduled within the total spane for the event.
• When the ordering relation �d exists between two events, it must be

satisfied in the timetable.
• Asset l ∈ L can be used concurrently on at most quantity l workplaces.

Thus, the number of students concurrently attending an event is limited
by the number of assets the students consume.

• When the event is placed concurrently in rooms, enough teaching staff
must be available to attend the event.

• Event e can be concurrently placed in at most roomse rooms.
• The students must attend all the events they are enrolled in.

The set of soft constraints Cs contains two elements:

• Students can attend an event only at the time when she or he is free
from other educational activities.

• Students can attend only one event at a time.
Defining these constraints as soft may seem irrational, but the reasoning
behind this is as follows: ’hard’ constraints are simply those that are at all
times satisfied for any individual (i.e., any solution) in GA population in our
implementation, whereas for the ’soft’ constraints this may not be the case.
’Soft’ constraints are defined as such because it was not known in advance
whether there even exists a solution that satisfies all the constraints (given
the complex requirements). In other words, our approach tries to find the
best solution within the imposed constraints and possibly to give a feedback
to the course organisers if some are still severely violated. In the remainder
of the text, the term ’feasible solution’ denotes the one that satisfies only
the hard constraints as defined above.

3 Solving LETP with Genetic Algorithm

3.1 Solution Representation

The adequate solution representation for the LETP suggests itself from the def-
inition of the problem: each solution sol (a timetable) contains all the events
that have to be scheduled. Each event e is, in turn, scheduled in one or more
event instances, where each instance is defined with the following: a time slot,
a subset of feasible rooms, and a subset of students that attend event e. Events
must be allocated in enough instances so that no students are left unscheduled.
We consider an event to be the basic unit of heredity in a chromosome.

– Event instance ie = (tsi, Ri, Si), where:
• tsi denotes the time slot allocated to particular event instance ie
• Ri denotes the allocated room set Ri ⊆ Re

• Si denotes allocated student subset Si ⊆ Se

– Event instance set I(e) = {i1e, · · · , ime}
– Solution sol = {I(e1), · · · , I(en)}, ∀ei ∈ E .

3.2 Creation of Initial Population

Each member of the initial population (a single solution) is created using the
following procedure:

while set of events E not empty do
select random event e and remove it from E;
De = set of valid days for event e;
Se = set of students that attend event e;
while (De not empty) AND (Se not empty) do

select random day d and remove it from De ;
TSe,d = set of valid timeslots for event e in day d;
while (TSe,d not empty) AND (Se not empty) do

select random timeslot ts and remove it from TSe,d ;
create event instance i = (ts, Ri, Si) with Ri = ∅ and Si = ∅;
for every suitable room r ∈ Re do

if (r is available in ts) AND (r meets event requirements) then
reserve room r and add it to Ri;
assign sizer · spwe students from Se to r and add them to Si;
remove assigned students from Se;

end if
end for

end while
end while
if Se not empty then

creation unsuccessful;
end if

end while

In the above procedure, ’valid days’ and ’valid timeslots’ denote suitable days
and slots according to the time constraints, while ’room meets requirements’
condition ensures all other requirements are met (such as the use of assets, staff
availability, etc.). Thus, every member of the population satisfies the given hard
constraints, whereas soft constraints may be violated.

It is obvious that the creation of a solution may not always succeed; the
above algorithm only succeeds at some success rate, dependent of the given set
of events and their requirements. However, even a small success rate allows the
creation of the desired number of solutions, since the algorithm is only performed
at the beginning of the evolution process. In our experiments the success rate
ranged between 5% and 75%, so we were always able to build the population in
this way. On the other hand, failure to do so could suggest the infeasibility of
the given constraints.

3.3 Fitness Function

Fitness function evaluates the quality of a solution and it is proportional to the
number of conflicts in a given solution. A conflict is a violation of soft constraints
which occurs if a student is scheduled to more than one event in the same time
slot. The number of conflicts is equal to the number of time quanta during which
events overlap. The exact fitness measure is defined as:

fitness =
∑
s∈S

∑
tq∈T

Ne,s,tq
· (Ne,s,tq

− 1)
2

where Ne,s,tq
represents the number of events the student is scheduled to in

current time quantum. For instance, if a student is scheduled on two events that
overlap in four time quanta, then the fitness value equals four. The best solution
will have fitness value of zero, meaning that no conflicts exist in the solution.

The calculation of the fitness function may be time consuming since it is
necessary to iterate through all the students and all the time slots in a solution.
In our implementation, the fitness is evaluated incrementally after an individual
has changed due to genetic operations. In other words, only the part of the
solution that has undergone some changes is reevaluated, which significantly
speeds up the fitness calculation.

3.4 Genetic Operators

In order to apply genetic algorithm to aforementioned problem, appropriate
genetic operators need to be devised. Due to the fact that every solution needs to
satisfy all of the hard constraints, the result of each genetic operation needs to be
a solution with the same property. Thus, we introduce especially crafted crossover
and mutation operators that are closed over the space of feasible solutions. The
crossover operator is defined as follows:

– Let us define Isol(e) as a set of event instances assigned to event e ∈ E in
one particular solution sol ∈ P , where P is current population.

– We define the relation ⊗ over SOL and I where I denotes a power set
of event instances and SOL denotes the LETP search space (the set of all
possible solutions). The characteristic function of the relation χ : SOL×I →
{T ,F} is defined to be true iff the insertion of a particular set of instances
I ∈ I into sol ∈ SOL does not cause violation of hard constraints.

– Now, we consider two particular solutions a ∈ P and b ∈ P contained in
current population P as parents. Crossover operator takes the parent solu-
tions a and b and produces a solution child. Having the relation ⊗ defined as
above, we describe the crossover operator using the following pseudo code:

Crossover (soluton a, solution b)
solution child = ∅;
randomly select subset of events E1 ⊂ E;
E2 = E − E1;
for all events e ∈ E1 do

add set of instances Ia(e) to child;
end for
for all events e in E2 do

if child ⊗ Ib(e) then
add set of instances Ib(e) to child;

else
randomly allocate I(e);
if child⊗ I(e) then

add I(e) to child;
else

discard child;
end if

end if
end for

In the above procedure, the creation of the child may not always succeed be-
cause the allocation of new event instances cannot always be performed without
the violation of hard constraints. In that case, the procedure is repeated until it
succeeds or a predefined number of repetitions is performed.

The mutation operator selects a random event and removes the associated set
of instances from the solution. The removed event instances are then generated
randomly with regard to hard constraints. This operation may be repeated more
than once as defined by the mutationLevel parameter (defined in subsection 3.6).
The mutation operator is applied on child solution after the crossover operation
(with a certain probability) and it uses the following pseudo code:

Mutation (solution a)
n = random value between (1, mutationLevel);
for i = 1 to n do

randomly select event e and remove instance set Ia(e) from solution a;
randomly allocate new instance set I(e) so that a⊗ I(e) holds;
add I(e) to a;

end for

3.5 Local Search Algorithm

Since genetic operators are designed to satisfy only hard constraints, the number
of conflicts in a solution (which are the consequence of soft constraints violation)
may increase during the evolution. To counter that, we implemented a fast local
search algorithm which improves the solution significantly.

The local search algorithm operates on students with conflicted schedules
within a single solution. The algorithm randomly choses a single student among
those and tries to find another instance (in another time slot) of the same event
that causes no conflicts for the chosen student. If such instance is not found, the
algorithm selects a random instance, but in both cases the student is allocated
to another instance. This operation is repeated (for randomly chosen students)
until a certain number of consecutive iterations without fitness improvement
occurs, where the number of repetitions is predefined. Local search is applied to
every individual produced by the crossover operator or modified by mutation.

The primary goal of local search is further reduction of soft constraint vi-
olations, since genetic operators are designed to optimize room allocation in
different time slots. After the rooms are allocated, the assignment of students to
event instances is a subproblem contained in LETP that local search is used to
optimize.

3.6 GA Parameters and Adaptation

The presented implementation has an adaptive parameter called mutationLevel.
Mutation level defines the maximum number of events that will be rescheduled
when a solution undergoes mutation. Mutation level is updated if stagnation
is detected. Stagnation occurs when there is no improvement in population in
particular number of generations called stagnationThreshold. If stagnation is
detected the following parameter updates are performed:

– stagnationThreshold = stagnationThreshold · 1.5;
– mutationLevel = min(mutationLevel + 1,maxMutationLevel);

When improvement occurs, the adaptive parameters are reset. The parame-
ters of the genetic algorithm are shown in Table 1.

4 Results

The described hybrid GA was successfully applied to laboratory exercises schedul-
ing at the authors’ institution during the last two semesters. In this paper we
present the actual results which were adopted in the students’ schedule and used
by the departments organizing the exercises. In each semester, there are several
periods during which the exercises may take place. The number and durations of
those periods are determined by the curriculum and the lectures schedule, which
is made prior to the laboratory scheduling. Each scheduling period, denoted a
laboratory cycle, is in fact a separate and independent timetabling problem with
associated dataset.

Table 1. Genetic algorithm parameters

parameter value

population size 30
selection algorithm tournament selection
tournament size 3
individual mutation probability 55 %
initial/maximum mutation level 1 / 10
initial stagnation threshold 5
stop criteria 10000 generations or min fitness = 0

The timetabling problems at authors’ institution had different durations and
a greatly varying number of events and attending students (total number of
students ranged from several hundred to more than two thousand). To estimate
problem size and dificuilty, we introduce the student events sum Ss,e as a measure
of a single laboratory cycle complexity. Ss,e is an aggregated number of events
that each student must attend, defined as Ss,e =

∑
s∈S

|Es| .

The algorithm was used in twelve different timetabling problems as listed in
the Table 2, where Ne denotes the number of events to be scheduled and days
is the cycle duration (the statistics are derived from 10 runs on each problem).
We managed to find a schedule with no conflicts for ten out of twelve problem
instances. The remaining two instances were subsequently proven to be impos-
sible to schedule without conflicts, by identifying a single event with infeasible
requirements posed by course organizers, in combination with existing lectures’
schedule. For instance, the best found fitness value of 24 in the first cycle resulted
from six students that were double booked in four time quanta each. The actual
problem datasets are available at http://morgoth.zemris.fer.hr/jagenda.

To illustrate the effectivenes of hybrid algorithm components, we also include
in Table 2 the best results obtained with random generation of solutions, local
search only (LS) and genetic algorithm without local search (GA).

5 Conclusions and Future Work

This paper describes the application of a hybrid genetic algorithm to a complex
timetabling problem and shows that, with appropriate solution representation
and genetic operators, it is possible to obtain solutions of a very good quality.

The problem is formulated as a laboratory exercises timetabling problem and
its formal definition is given. Although highly constrained, we believe that the
definition is quite general and may be applied to a wider class of problems, simply
by omitting some of the requirements or further specializing the existing ones.
For instance, the set L of limited assets may be removed or the time quantum
duration may be changed if the problem at hand allows it. The scheduling of the

Table 2. Algorithm performance on twelve different laboratory cycles

fitness - best of run comparison

cycle Ne Ss,e days min avg max st.dev.(σ) rnd. LS only GA only

1 51 7081 9 24 228.6 286 77.2 14615 1937 6647
2 9 2104 5 0 0.0 0 0 4565 399 2667
3 11 2553 5 0 16.2 32 10.1 5839 395 2522
4 16 4868 5 0 28.4 146 44.9 9755 684 4346
5 6 1586 5 0 0.0 0 0 3771 379 2668
6 8 2471 5 0 0.0 0 0 4838 610 2320
7 15 3648 5 0 7.4 12 5.5 7830 623 3424
8 19 5430 4 82 89.9 106 9.6 13486 1505 6021
9 9 3843 5 0 59.0 126 54.95 7088 506 4166
10 8 1701 5 0 3.55 8 5.81 4254 41 3210
11 11 1783 5 0 124.8 132 2.5 3646 466 1974
12 21 5934 5 0 184.3 292 48.1 12477 10540 6476

events may be forced to a single instance by defining event timespan equal to
the event duration, a whole semester timetable can be generated by repeating
a single cycle, etc. With all those adaptations, the solution representation and
evolutionary algorithm need not be changed at all, although for a greatly sim-
plified variant of the problem, some other algorithm may consequently obtain
the results faster.

The algorithm presumes that every solution in every stage of evolution pro-
cess satisfies the defined set of hard constraints. To achieve that, we define a
solution initialization procedure for building the initial population. The proce-
dure may not always succeed in creation of a valid solution, so it must be repeated
until a desired number of solutions are created. While the creation success rate
may be low, it still does not present a problem since the initialization of the
whole population is performed only once, at the beginning of the evolution. The
drawback of this approach is that it is possible to have a set of requirements
that would make it impossible to create a valid solution. However, in all our
experiments we have not encountered that situation.

The genetic operators preserve the mentioned property of the solutions while
trying to combine ’adequately’ scheduled events. The efficiency of the opera-
tors when used without local search is generally not high, and in that case the
convergence is relatively slow. The inclusion of the local search operator, that
concentrates on student allocation only, has proven beneficial to the optimiza-
tion process as it improved the quality of the individuals and accelerated the
convergence.

A possible improvement could be gained by devising and experimenting with
different variants of crossover and mutation. Furthermore, a systematic exper-
imentation is needed regarding the values of various parameters used in the

algorithm, since they can have a significant impact on the performance. Never-
theless, even the relatively simple operators used in the algorithm succeeded in
producing solutions of acceptable quality.

References

1. McCollum, B.: University timetabling: Bridging the gap between research and
practice. In E Burke, H.R., ed.: PATAT 2006—Proc. 6th Int. Conf. on the Practice
And Theory of Automated Timetabling, Masaryk University (2006) 15 – 35

2. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A Survey of Search Method-
ologies and Automated Approaches for Examination Timetabling. Technical Re-
port NOTTCS-TR-2006-4, School of CSiT, University of Nottingham (2006)

3. Burke, E., Petrovic, S.: Recent research directions in automated timetabling. Eu-
ropean Journal of Operational Research 127(2) (2002) 266–280

4. Schaerf, A.: A survey of automated timetabling. In: 115. Centrum voor Wiskunde
en Informatica (CWI), ISSN 0169-118X (1995) 33

5. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum (2007)

6. Azimi, Z.: Hybrid heuristics for Examination Timetabling problem. Applied Math-
ematics and Computation 163(2) (2005) 705–733

7. Azimi, Z.: Comparison of Methheuristic Algorithms for Examination Timetabling
Problem. Applied Mathematics and Computation 16(1) (2004) 337–354

8. Rossi-Doria, O., Sample, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L.,
Stützle, T.: A Comparison of the Performance of Different Metaheuristics on the
Timetabling Problem. In: The Practice and Theory of Automated Timetabling
IV: Revised Selected Papers from the 4th Int. conf., Gent 2002. Volume 2740 of
Lecture Notes in Computer Science., Springer, Berlin, Germany (2003) 329–351

9. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art. In: Proc. of EvoCOP
2003 – 3rd European Workshop on Evolutionary Computation in Combinatorial
Optimization. Volume 2611 of Lecture Notes in Computer Science., Springer Ver-
lag, Berlin, Germany (2003) 334–345

10. Socha, K., Knowles, J., Sampels, M.: A MAX -MIN Ant System for the Uni-
versity Timetabling Problem. In Dorigo, M., Di Caro, G., Sampels, M., eds.:
Proceedings of ANTS 2002 – From Ant Colonies to Artificial Ants: Third Interna-
tional Workshop on Ant Algorithms. Volume 2463 of Lecture Notes in Computer
Science., Springer Verlag, Berlin, Germany (2002) 1–13

11. E.K. Burke, K. Jackson, J.K., Weare, R.: Automated university timetabling: The
state of the art. The Computer Journal 40(9) (1997) 565–571

12. van den Broek, J., Hurkens, C., Woeginger, G.: Timetabling problems at the TU
Eindhoven. In: PATAT. (2006) 123–138

13. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction problems.
In: Proc. of the 1st Int. Conference on the Practice and Theory of Automated
Timetabling (ICPTAT ’95). (1995) 511–522

14. Gross, J.L., Yellen, J.: Handbook of Graph Theory. CRC Press (2004)

