
Exam Timetabling Using Genetic Algorithm

Marko upi , Marin Golub, Domagoj Jakobovi

Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

{Marko.Cupic|Marin.Golub|Domagoj.Jakobovic}@fer.hr

Abstract. In this paper we present a case study

concerning the exam timetabling problem we

faced, and its genetic algorithm based solution.

Several variations of the algorithm as well as the

influence of algorithm parameters are analyzed.

Keywords. Exam timetabling, Genetic

algorithm

1. Introduction and Motivation

In academic year 2005/2006 Faculty of

Electrical Engineering and Computing (FER)

was one of the first members of University of

Zagreb to align itself with Bologna Process. This

introduced many organizational issues. Offering

students a number of elective courses created

several timetabling problems – from lecture

timetabling and laboratory timetabling to exam

timetabling. Each semester was divided into 3

cycles, each containing four or five weeks of

lectures followed by a week for laboratory

exercises followed by a week for exams (see

Figure 1.a). Previous program organization had

equally distributed laboratory exercises and

exams throughout semester, so this new

organization increased the pressure to students.

During the period of four years since the

alignment with Bologna process started,

organization was gradually modified to relieve

created pressure. Laboratory exercises are now

blended into lecture weeks, and exams are

expanded into two weeks (see Figure 1.b).

The alignment with Bologna process imposed

several very challenging organizational tasks.

Students can specialize themselves by taking

several of a number of elective courses offered.

Also, there is no strict distinction among

different years of study; instead, courses have

prerequisites, which enables a student to enroll

some of the courses offered on first, second and

third year at the same time (for which the

prerequisites are met). Those situations render

lecture and laboratory exercise timetabling very

difficult.

4 weeks of lectures

Laboratory week

Exam week

4 weeks of lectures

Laboratory week

Exam week

5 weeks of lectures

Laboratory week

Exam week

5 weeks of lectures

mixed with

laboratory

exercises

2 weeks for exams

4 weeks of lectures

mixed with

laboratory

exercises

4 weeks of lectures

mixed with

laboratory

exercises

2 weeks for exams

2 weeks for exams

(A) (B)

Figure 1. Semester organization. (A) first year
after alignment with Bologna process, and

(B) current organization.

Concentrated exams are also very demanding

for students, so it is necessary to produce the

exam timetable such that as many of students as

possible have maximally sparse schedule (for

example, more than one exam in the same day or

exams in adjacent days should be avoided if

possible). Creating such a timetable can not be

done by hand. Simple algorithms performing

exhaustive search on real case examples are also

not an option, due to the complexity of the

problem. There are many methods applicable for

such problems (see e.g. [1]). A comparison of

methods for solving such problems can be found

in [7]. This paper will focus on a solution based

on evolutionary inspired algorithm known as

genetic algorithm [4,5,6]. We will describe its

performance on a real case scenario: timetabling

first mid-term exams of the academic year

2008/2009, winter semester. We will analyze

several variations of genetic algorithm and the

influence of its parameters on the quality of the

obtained solutions. Finally, we will show that

357
Proceedings of the ITI 2009 31st Int. Conf. on Information Technology Interfaces, June 22-25, 2009, Cavtat, Croatia

genetic algorithm can be a powerful tool for

tackling with the described problem, and that it

can be easily adapted to other faculties facing the

same problems.

 This paper is organized as follows. In Section

2 we give a problem definition and describe the

size of the problem. In Section 3 we describe the

genetic algorithm based solution. In Section 4 we

describe several variations of algorithm we

tested. Section 5 gives experimental results.

2. Problem Definition

Specific exam timetabling problem for which

we needed a solution can be described as

follows.

We define T={t1,t2,…,tn} a set of distinct non-

overlapping terms. A term is a time period in a

specific day having a beginning time and

duration. Several terms can exist in the same day

(but not overlapping). Function day(t) for each

term t T gives its day. Function capacity(t) for

each term t T gives maximal number of students

that can be assigned to that term (this reflects the

number of rooms available for exams at that

specific time).

There is a set of students S={s1,s2,…,sl} and a

set of courses C={c1,c2,…,cm}, and mapping

enrollment: C CS, which for each course c C

gives a set of enrolled students CS S.

There is also a set of fixed course terms

FXC={(cx,ty), (cw,tz),…}. That means it can be

required that some courses have exams at exactly

specified terms. This means that the algorithm

can not arbitrarily chose best terms for those

courses (so in a way, the problem becomes

simpler). However, the algorithm must be aware

of those assignments, in order to avoid creating

conflicts when assigning other courses at the

same terms.

There is a set LC of disjunctive sets LCi of

linked courses: LC={LC1,LC2,…}, LCi C, and

for each i j LCi LCj= . Linked courses LCi are

courses for which exams are required to be held

at the same term. The term itself can be selected

by the algorithm, but all linked courses must then

be assigned to that term. This can potentially

lead to ill-posed problems, if a special care is not

taken to ensure that all linked courses are

disjunctive with regard to enrolled students.

Handling this constraint is required by similar

courses held for different study programs, in

order to allow the creation of one exam sheet

with slight variations for each study program.

As a solution to the problem, it is required to

find a mapping solution C T that for each

course c C assigns one term t T in which that

course's exam should be held. Such a solution

must satisfy the following constraint: let CTi

denotes a set of all courses cj C that are

scheduled in term ti T; then for each two courses

cx and cy from CTi, x y must be enrollment(cx)

enrollment(cy)= , i.e. there should be no

conflicting courses regarding enrolled students

assigned to the same term.

Typically, there will be many solutions for

which the imposed constraint is met. So, we

further search a solution whose quality is better.

The quality of a solution will depend on

following two factors: (i) how many students are

scheduled to have more than one exam at the

same day and how many times this happens for

those students, and (ii) how many students have

scheduled exams at adjacent days and how many

times this happens for those students. The first

factor is also more significant than the second,

i.e. it is better to have two exams at adjacent days

than at the same day.

In this paper, we will consider the following

case. There are more than 18000 student-course

enrollments, with 102 courses giving in average

180 students per course. Of those courses, exams

for 77 should be scheduled in a two week period.

Furthermore, in each day there are three terms

available (09h-11h, 12-14h and 15h-17h), and in

each week five days are available, which gives a

total of 3 5 2=30 terms. A number of possible

timetables with those parameters is roughly

bounded by 3077 10114. This clearly indicates

that any attempt to solve this problem that is

based on exhaustive search is not an option.

3. Genetic Algorithm Based Solution

Genetic algorithm is an evolutionary inspired

metaheuristic method that does not guarantee to

find optimal solution. In fact, there are a number

of problems known as deceptive functions that

are extremely hard for genetic algorithm.

However, in many cases genetic algorithm can

relatively quickly find a good-enough solution.

Genetic algorithm works with a population of

possible problem solutions. Each solution is

often called a chromosome (in this paper we will

use both terms interchangeably). For each

solution a quality is measured (called fitness).

Using some probabilistic selection method, two

chromosomes are selected and combined by

358

appropriate crossover operator to produce a new

chromosome called a child. This child can also

be mutated using mutation operator. Then, the

obtained child replaces some solution from the

population, and the whole procedure repeats

itself. Pseudocode of genetic algorithm is shown

in Figure 2.

initializePopulation P

for each soli from P

 calculateFitness(sol)

repeat

 select two parents sol1 and sol2 from P

child = crossover(sol1, sol2)

 mutate(child)

 calculateFitness(child)

 replaceSome(P, child)

until stop condition not meet

Figure 2. Pseudocode of genetic algorithm

In order for the algorithm to work properly,

the selection operator must pick parents from

population probabilistically, but in a way that

better parents have a greater chance to be picked

(this is called evolutionary pressure). This way it

is expected that, in average, a child will also

have a better quality, and after entering the

population and replacing some solution that is

worse, the average population quality will also

be improved. The selection method we have used

can be described as follows. We select three

random solutions from the population. The

solutions are sorted based on fitness. the best two

solutions are uses as parents, which leaves the

third (the worst) solution as a candidate for

replacement (thus producing evolutionary

pressure).

After the creation of a child solution from the

selected parents and probabilistic mutation, the

child is checked to prevent duplicate solutions. If

a duplicate is found in the population, the child is

discarded. Otherwise, one of the solutions from

the population is replaced with newly obtained

child, and the procedure is repeated, either until a

good-enough solution is found, or a

predetermined iteration count is reached.

3.1. Global Data Structures

In order to efficiently implement genetic

algorithm for this problem, we define four

globally available data structures, as shown in

Figure 3. Each course contains its name, its index

in courses array, enrolled students, a flag saying

whether it should be assigned in fixed term (and

which term), a number of students it shares with

other courses, and a flag saying whether it is a

member of some linked courses group (called

CourseCluster).

Course[] courses;

Term[] terms;

Student[] students;

CourseCluster[] courseClusters;

Figure 3. Global data structures

Each term contains its time information, day

index, capacity and associated index in terms

array. Each course cluster contains indexes of

courses from courses array which are members

of the same group.

3.2. Chromosome Structure

There are many ways to represent a single

solution that are adequate for genetic algorithm.

The simplest way is to represent a solution as a

string of bits rendering crossover and mutation

operators extremely simple. However, decoding

such a representation can be inefficient. Instead,

we have used a slightly redundant representation

that enabled us to implement most of the genetic

operators as O(1); see Figure 4.

KCourse[] kcourse;

KTerm[] kterms;

int[] clusterTerms;

int[] eval;

Figure 4. A single chromosome

KCourse is a chromosome specific simple

structure containing a pointer to global course

information, index of assigned term, and pointers

to previous and next KCourse, allowing the

creation of circular double-linked list of

KCourses which belong to same term. KTerm is

also a chromosome specific simple structure

containing a pointer to global term information

and pointer to some KCourse object which is

scheduled to that term. Having this structures set

up, information such as "all courses assigned to

term ti" or "in which term is assigned course ci"

can be directly obtained with no searching. This

is illustrated in Figure 5, with 8 courses and 3

terms. Arrows above courses represent next

course relation (e.g. next(c1)=c3, next(c3)=c4,

359

Figure 5. Chromosome structure

next(c4)=c1), while arrows below courses

represent previous relation (e.g. previous(c1)=c4,

previous(c3)=c1, previous(c4)=c3). Pointers

from courses to terms are represented as dashed

arrows, and pointer from each term to one term

representative course is given as dotted bold

arrow. Now it is obvious that moving a single

course from one term to another can be

implemented as O(1) operation. The array

clusterTerms contains indexes that for each

CourseCluster point to the term in which all

courses from associated cluster are assigned.

Finally, array eval contains components of

fitness function for that chromosome. Similar

structure was successfully used in [10].

3.3. Crossover and Mutation

The crossover operator is implemented as

uniform crossover. The first parent is copied into

the child. Then, for each course its term is

updated to match the term it has in second parent

with 50 percent probability.

Two mutation operators are implemented.

The first mutation is course mutation, which with

probability probMut randomly selects new term

for a course. The second mutation is term

mutation which with probability probSwapTerm

randomly selects a second term and then

exchanges all courses between them.

3.4. Evaluation Function

The fitness of a solution is composed of three

components. To obtain the first component, for

each term and for each course in that term a

number of students shared with other courses

assigned to the same term is counted (this

represents a conflict). Total conflict count is then

stored as eval[0] in chromosome. The second

component measures the solution quality. For

each term ti and for each course cj in that term it

counts how many exams students of course ci

have at that same day (this count is then scaled

by factor 4), and how many exams they have the

next day (this count is added without scaling).

The previous day is not considered in order to

prevent double counting. This number is then

stored as eval[1] in chromosome. Finally, for

each term a number of students exceeding term

capacity is counted, and a total sum is then stored

as eval[2]. With fitness defined this way, better

solution is the one having smaller numbers as

components of eval. Also note that in order for a

solution to be acceptable, eval[0] (number of

conflicts) and eval[2] (number of exceeding

students) should be 0.

4. Variants of the Algorithm

To analyze how this algorithm performs,

several variants were implemented, all of which

are the result of modification of three algorithm

procedures: (i) parent selection procedure, (ii)

replacement selector procedure and (iii)

modulated randomness of the random number

generator for term selection, as explained in the

following sections.

4.1. Parent Selection Procedure

In order to assure adequate evolution

pressure, when selecting parents to crossover,

three solutions are selected randomly from

population, and then ordered by their fitness.

However, to sort selected solutions, a total

ordering procedure must be defined, since eval is

a vector, and not a scalar. Some approaches to

tackle this are described in [3,8,9]. We defined

two procedures. The first one, called wsel, uses

weighted sum of components, so that we can

obtain a scalar fitness=(eval[0]+eval[1])*w1+

360

eval[2]*w2. The solutions are then ordered based

on calculated scalar value.

The second approach (hsel) introduces a

hierarchy among components of eval. To

simplify this, we map three-component eval into

two-component tuple (e1,e2)=(eval[0]+eval[2],

eval[1]), and compare the solutions firstly by the

first element, and if they are equal, then by the

second element.

4.2. Replacement Selection Procedure

After a child is created, a solution from the

population must be selected which will be

replaced with the child. We created two

procedures: nrep selects the third (the worst)

solution from initial parent selection procedure to

be replaced. hrep first divides the whole

population with regard to child into four

quadrants based on mapped eval tuples (e1,e2),

see figure 6.

Figure 6. Population division

The procedure then finds the first nonempty

quadrant (starting with quadrant marked with 1),

and selects one random solution from that

quadrant to replace. Such approach has been

described in [2].

4.3. Modulation of Probability Function

Initially we experimented with uniformly

distributed random number generator (mod1).

However, after a number of experiments, we

observed situations where some terms were

relatively rarely used. To tackle this, during the

optimization we periodically check frequency

usage of each term in whole population, and

modify probability function so that random

number generator returns indexes of terms with

lower usage with higher probability (mod2). As a

third procedure (mod3), we used mod1 50% of

the time and mod2 the other 50%.

5. Results

Based on the described algorithm variations

we ran a number of experiments on real data

with 77 courses that needed to be scheduled in

30 terms over a 10 days period. Each time

genetic algorithm was allowed to make 4000000

iterations (each iteration is one selection /

crossover / mutation / replacement cycle), which

took about 2 minutes. We varied parent selection

and replacement selection in three combinations

(wsel/nrep, hsel/nrep, hsel/hrep), where wsel

used factors w1=1 and w2=0.05. Each of those

combinations was tested with three probability

functions (mod1, mod2 and mod3). For each of

those we also varied probMut and

probSwapTerm (values were taken from the set

{1, 2, 5}), and population sizes (values were

taken from the set {20, 50, 100, 200}), giving a

total of 324 experiments. Each experiment was

repeated 3 times in order to get the average

solution quality.

A selection of obtained results is presented in

table 1. Table shows obtained results as a

function of population size, probability of

mutation, probability of term swapping, selection

operator and replacement type. For each

probability function 5 of best solutions are given.

The best found solution is obtained when

probability function is modified so that rarely

used terms are more likely to be generated next.

In best solutions probMut parameter is tipically

small (1 or 2). Worst solutions were generated

with probMut set to 5. It also seems that

algorithm is not too sensitive to values of

probSwapTerm parameter.

6. Conclusion and Future Work

In this paper we presented an approach to

producing exam timetables which is based on

genetic algorithm. Genetic algorithm is an

extremely robust method which can successfully

provide good-enough solutions to many

optimization problems, one of which is exam

timetabling. We tested the created algorithm on a

real data and obtained satisfactory results.

The behavior of the developed algorithm was

examined with respect to parameter variations

and different selection and replacement

procedures. Best results were obtained with

moderate populations (50 to 100), small

probMut, and by using procedures hsel, hrep and

mod2, and all of that in a rather small amount of

time (less than two minutes). As part of this

361

work, an open source application is being

developed which will incorporate the developed

algorithm, and enable a broader academic

community to solve its exam timetabling

problems.

8. Acknowledgements

This work has been carried out within

projects 036-0361994-1995 Universal

Middleware Platform for Intelligent e-Learning

Systems and 036-0362980-1921 Computing

Environments for Ubiquitous Distributed

Systems both funded by the Ministry of Science

and Technology of the Republic Croatia.

9. References

[1] Burke E.K, Newall J.P, WeareR.F. A

memetic algorithm for university exam

timetabling. In: E.K. Burke, P. Ross editors.

Practice and Theory of Automated

Timetabling: Selected Papers from the 1st

International Conference. LNCS 1153.

Springer-Verlag, Berlin, Heidelberg. p. 241-

250, 1996.

[2] Chu P. C, Beasley J. E. Constraint Handling

in Genetic Algorithms: The Set Partitioning

Problem. Journal of Heuristics, 11, p. 323-

357, 1998.

[3] Fonseca C. M, Fleming P. J. Genetic

algorithms for multiobjective optimization:

Formulation, discussion and generalization.

In Forrest S, editor. Genetic Algorithms:

Proceedings of the Fifth International

Conference, pp. 416-423, San Mateo, CA:

Morgan Kaufmann, 1993.

Table 1. Results of parameter variations

Population

size
pMut [%] pSwap [%] Selection

Replacement

type

Number of

conflicts

eval[0]

Solution

quality

eval[1]

Capacity

violations

eval[2]

Best 5 solutions (mod3)
200 1 5 wsel nrep 0.67 1754.67 0

50 1 1 wsel nrep 0.33 1763.33 0

20 1 5 hsel hrep 0.00 1770.00 0

20 1 1 hsel hrep 0.00 1789.00 0

50 1 5 wsel nrep 0.33 1795.00 0

Best 5 solutions (mod1)
100 1 5 hsel nrep 0.00 1733.33 0

20 2 5 hsel nrep 0.00 1733.33 0

20 2 2 hsel nrep 0.00 1749.00 0

200 2 2 hsel hrep 0.00 1757.67 0

50 2 5 hsel nrep 0.00 1760.67 0

Best 5 solutions (mod2)
50 1 5 hsel hrep 0.00 1708.00 0

20 1 5 wsel nrep 0.33 1718.67 0

100 1 5 hsel hrep 0.00 1740.33 0

50 1 5 hsel nrep 0.00 1742.67 0

20 1 5 hsel nrep 0.00 1762.33 0

[4] Goldberg D.E. Genetic Algorithms in

Search, Optimization and Machine

Learning. Addison-Wesley, 1989

[5] Haupt, R. L, Haupt S.E. Practical genetic

algorithms. New York: Wiley, 1998.

[6] Mitchell M. An Introduction to Genetic

Algorithms. Cambridge, MA: MIT Press,

1998

[7] Naji Azimi Z. Comparison of metaheuristic

algorithms for examination timetabling

problem. Applied Mathematics and

Computation, 16(1-2): p. 337-354, 2004.

[8] Schaffer J. D. Multiple objective

optimization with vector evaluated genetic

algorithms. In Grefenstette J. J, editor.

Proceedings of the First International

Conference on Genetic Algorithms;

Lawrence Erlbaum; p. 93-100; 1985.

[9] Srinivas N, Deb K. Multiobjective

optimization using nondominated sorting in

genetic algorithms. Evolutionary

Computation 2(3), 221–248, 1994.

[10] Talbi E-G, Weinberg B. Breaking the search

space symmetry in partitioning problems:

An application to the graph coloring

problem. Theoretical Computer Science

(TCS), Vol.378, No.1, p. 78-86, 2007.

362

