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Abstract. In this paper we present a case study 

concerning the exam timetabling problem we 

faced, and its genetic algorithm based solution. 

Several variations of the algorithm as well as the 

influence of algorithm parameters are analyzed. 
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1. Introduction and Motivation 

In academic year 2005/2006 Faculty of 

Electrical Engineering and Computing (FER) 

was one of the first members of University of 

Zagreb to align itself with Bologna Process. This 

introduced many organizational issues. Offering 

students a number of elective courses created 

several timetabling problems – from lecture 

timetabling and laboratory timetabling to exam 

timetabling. Each semester was divided into 3 

cycles, each containing four or five weeks of 

lectures followed by a week for laboratory 

exercises followed by a week for exams (see 

Figure 1.a). Previous program organization had 

equally distributed laboratory exercises and 

exams throughout semester, so this new 

organization increased the pressure to students. 

During the period of four years since the 

alignment with Bologna process started, 

organization was gradually modified to relieve 

created pressure. Laboratory exercises are now 

blended into lecture weeks, and exams are 

expanded into two weeks (see Figure 1.b). 

The alignment with Bologna process imposed 

several very challenging organizational tasks. 

Students can specialize themselves by taking 

several of a number of elective courses offered. 

Also, there is no strict distinction among 

different years of study; instead, courses have 

prerequisites, which enables a student to enroll 

some of the courses offered on first, second and 

third year at the same time (for which the 

prerequisites are met). Those situations render 

lecture and laboratory exercise timetabling very 

difficult.
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Figure 1. Semester organization. (A) first year 
after alignment with Bologna process, and 

(B) current organization. 

Concentrated exams are also very demanding 

for students, so it is necessary to produce the 

exam timetable such that as many of students as 

possible have maximally sparse schedule (for 

example, more than one exam in the same day or 

exams in adjacent days should be avoided if 

possible). Creating such a timetable can not be 

done by hand. Simple algorithms performing 

exhaustive search on real case examples are also 

not an option, due to the complexity of the 

problem. There are many methods applicable for 

such problems (see e.g. [1]). A comparison of 

methods for solving such problems can be found 

in [7]. This paper will focus on a solution based 

on evolutionary inspired algorithm known as 

genetic algorithm [4,5,6]. We will describe its 

performance on a real case scenario: timetabling 

first mid-term exams of the academic year 

2008/2009, winter semester. We will analyze 

several variations of genetic algorithm and the 

influence of its parameters on the quality of the 

obtained solutions. Finally, we will show that 
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genetic algorithm can be a powerful tool for 

tackling with the described problem, and that it 

can be easily adapted to other faculties facing the 

same problems. 

 This paper is organized as follows. In Section 

2 we give a problem definition and describe the 

size of the problem. In Section 3 we describe the 

genetic algorithm based solution. In Section 4 we 

describe several variations of algorithm we 

tested. Section 5 gives experimental results.  

2. Problem Definition 

Specific exam timetabling problem for which 

we needed a solution can be described as 

follows.

We define T={t1,t2,…,tn} a set of distinct non-

overlapping terms. A term is a time period in a 

specific day having a beginning time and 

duration. Several terms can exist in the same day 

(but not overlapping). Function day(t) for each 

term t T gives its day. Function capacity(t) for 

each term t T gives maximal number of students 

that can be assigned to that term (this reflects the 

number of rooms available for exams at that 

specific time). 

There is a set of students S={s1,s2,…,sl} and a 

set of courses C={c1,c2,…,cm}, and mapping 

enrollment: C CS, which for each course c C

gives a set of enrolled students CS S.

There is also a set of fixed course terms 

FXC={(cx,ty), (cw,tz),…}. That means it can be 

required that some courses have exams at exactly 

specified terms. This means that the algorithm 

can not arbitrarily chose best terms for those 

courses (so in a way, the problem becomes 

simpler). However, the algorithm must be aware 

of those assignments, in order to avoid creating 

conflicts when assigning other courses at the 

same terms. 

There is a set LC of disjunctive sets LCi of 

linked courses: LC={LC1,LC2,…}, LCi C, and 

for each i j LCi LCj= . Linked courses LCi are 

courses for which exams are required to be held 

at the same term. The term itself can be selected 

by the algorithm, but all linked courses must then 

be assigned to that term. This can potentially 

lead to ill-posed problems, if a special care is not 

taken to ensure that all linked courses are 

disjunctive with regard to enrolled students. 

Handling this constraint is required by similar 

courses held for different study programs, in 

order to allow the creation of one exam sheet 

with slight variations for each study program. 

As a solution to the problem, it is required to 

find a mapping solution C T that for each 

course c C assigns one term t T in which that 

course's exam should be held. Such a solution 

must satisfy the following constraint: let CTi

denotes a set of all courses cj C that are 

scheduled in term ti T; then for each two courses 

cx and cy from CTi, x y must be enrollment(cx)

enrollment(cy)= , i.e. there should be no 

conflicting courses regarding enrolled students 

assigned to the same term. 

Typically, there will be many solutions for 

which the imposed constraint is met. So, we 

further search a solution whose quality is better. 

The quality of a solution will depend on 

following two factors: (i) how many students are 

scheduled to have more than one exam at the 

same day and how many times this happens for 

those students, and (ii) how many students have 

scheduled exams at adjacent days and how many 

times this happens for those students. The first 

factor is also more significant than the second, 

i.e. it is better to have two exams at adjacent days 

than at the same day. 

In this paper, we will consider the following 

case. There are more than 18000 student-course 

enrollments, with 102 courses giving in average 

180 students per course. Of those courses, exams 

for 77 should be scheduled in a two week period. 

Furthermore, in each day there are three terms 

available (09h-11h, 12-14h and 15h-17h), and in 

each week five days are available, which gives a 

total of 3 5 2=30 terms. A number of possible 

timetables with those parameters is roughly 

bounded by 3077   10114. This clearly indicates 

that any attempt to solve this problem that is 

based on exhaustive search is not an option. 

3. Genetic Algorithm Based Solution 

Genetic algorithm is an evolutionary inspired 

metaheuristic method that does not guarantee to 

find optimal solution. In fact, there are a number 

of problems known as deceptive functions that 

are extremely hard for genetic algorithm. 

However, in many cases genetic algorithm can 

relatively quickly find a good-enough solution. 

Genetic algorithm works with a population of 

possible problem solutions. Each solution is 

often called a chromosome (in this paper we will 

use both terms interchangeably). For each 

solution a quality is measured (called fitness). 

Using some probabilistic selection method, two 

chromosomes are selected and combined by 
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appropriate crossover operator to produce a new 

chromosome called a child. This child can also 

be mutated using mutation operator. Then, the 

obtained child replaces some solution from the 

population, and the whole procedure repeats 

itself. Pseudocode of genetic algorithm is shown 

in Figure 2.  

initializePopulation P

for each soli from P

    calculateFitness(sol)

repeat

    select two parents sol1 and sol2 from P

child = crossover(sol1, sol2)

    mutate(child)

    calculateFitness(child)

    replaceSome(P, child)

until stop condition not meet 

Figure 2. Pseudocode of genetic algorithm 

In order for the algorithm to work properly, 

the selection operator must pick parents from 

population probabilistically, but in a way that 

better parents have a greater chance to be picked 

(this is called evolutionary pressure). This way it 

is expected that, in average, a child will also 

have a better quality, and after entering the 

population and replacing some solution that is 

worse, the average population quality will also 

be improved. The selection method we have used 

can be described as follows. We select three 

random solutions from the population. The 

solutions are sorted based on fitness. the best two 

solutions are uses as parents, which leaves the 

third (the worst) solution as a candidate for 

replacement (thus producing evolutionary 

pressure).

After the creation of a child solution from the 

selected parents and probabilistic mutation, the 

child is checked to prevent duplicate solutions. If 

a duplicate is found in the population, the child is 

discarded. Otherwise, one of the solutions from 

the population is replaced with newly obtained 

child, and the procedure is repeated, either until a 

good-enough solution is found, or a 

predetermined iteration count is reached. 

3.1. Global Data Structures 

In order to efficiently implement genetic 

algorithm for this problem, we define four 

globally available data structures, as shown in 

Figure 3. Each course contains its name, its index 

in courses array, enrolled students, a flag saying 

whether it should be assigned in fixed term (and 

which term), a number of students it shares with 

other courses, and a flag saying whether it is a 

member of some linked courses group (called 

CourseCluster). 

Course[] courses; 

Term[] terms; 

Student[] students; 

CourseCluster[] courseClusters; 

Figure 3. Global data structures 

Each term contains its time information, day 

index, capacity and associated index in terms

array. Each course cluster contains indexes of 

courses from courses array which are members 

of the same group.  

3.2. Chromosome Structure 

There are many ways to represent a single 

solution that are adequate for genetic algorithm. 

The simplest way is to represent a solution as a 

string of bits rendering crossover and mutation 

operators extremely simple. However, decoding 

such a representation can be inefficient. Instead, 

we have used a slightly redundant representation 

that enabled us to implement most of the genetic 

operators as O(1); see Figure 4.

KCourse[] kcourse; 

KTerm[] kterms; 

int[] clusterTerms; 

int[] eval; 

Figure 4. A single chromosome 

KCourse is a chromosome specific simple 

structure containing a pointer to global course 

information, index of assigned term, and pointers 

to previous and next KCourse, allowing the 

creation of circular double-linked list of 

KCourses which belong to same term. KTerm is 

also a chromosome specific simple structure 

containing a pointer to global term information 

and pointer to some KCourse object which is 

scheduled to that term. Having this structures set 

up, information such as "all courses assigned to 

term ti" or "in which term is assigned course ci"

can be directly obtained with no searching. This 

is illustrated in Figure 5, with 8 courses and 3 

terms. Arrows above courses represent next

course relation (e.g. next(c1)=c3, next(c3)=c4, 
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Figure 5. Chromosome structure 

next(c4)=c1), while arrows below courses 

represent previous relation (e.g. previous(c1)=c4, 

previous(c3)=c1, previous(c4)=c3). Pointers 

from courses to terms are represented as dashed 

arrows, and pointer from each term to one term 

representative course is given as dotted bold 

arrow. Now it is obvious that moving a single 

course from one term to another can be 

implemented as O(1) operation. The array 

clusterTerms contains indexes that for each 

CourseCluster point to the term in which all 

courses from associated cluster are assigned. 

Finally, array eval contains components of 

fitness function for that chromosome. Similar 

structure was successfully used in [10]. 

3.3. Crossover and Mutation 

The crossover operator is implemented as 

uniform crossover. The first parent is copied into 

the child. Then, for each course its term is 

updated to match the term it has in second parent 

with 50 percent probability.  

Two mutation operators are implemented. 

The first mutation is course mutation, which with 

probability probMut randomly selects new term 

for a course. The second mutation is term 

mutation which with probability probSwapTerm

randomly selects a second term and then 

exchanges all courses between them. 

3.4. Evaluation Function 

The fitness of a solution is composed of three 

components. To obtain the first component, for 

each term and for each course in that term a 

number of students shared with other courses 

assigned to the same term is counted (this 

represents a conflict). Total conflict count is then 

stored as eval[0] in chromosome. The second 

component measures the solution quality. For 

each term ti and for each course cj in that term it 

counts how many exams students of course ci

have at that same day (this count is then scaled 

by factor 4), and how many exams they have the 

next day (this count is added without scaling). 

The previous day is not considered in order to 

prevent double counting. This number is then 

stored as eval[1] in chromosome. Finally, for 

each term a number of students exceeding term 

capacity is counted, and a total sum is then stored 

as eval[2]. With fitness defined this way, better 

solution is the one having smaller numbers as 

components of eval. Also note that in order for a 

solution to be acceptable, eval[0] (number of 

conflicts) and eval[2] (number of exceeding 

students) should be 0. 

4. Variants of the Algorithm 

To analyze how this algorithm performs, 

several variants were implemented, all of which 

are the result of modification of three algorithm 

procedures: (i) parent selection procedure, (ii) 

replacement selector procedure and (iii) 

modulated randomness of the random number 

generator for term selection, as explained in the 

following sections. 

4.1. Parent Selection Procedure 

In order to assure adequate evolution 

pressure, when selecting parents to crossover, 

three solutions are selected randomly from 

population, and then ordered by their fitness. 

However, to sort selected solutions, a total 

ordering procedure must be defined, since eval is 

a vector, and not a scalar. Some approaches to 

tackle this are described in [3,8,9]. We defined 

two procedures. The first one, called wsel, uses 

weighted sum of components, so that we can 

obtain a scalar fitness=(eval[0]+eval[1])*w1+
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eval[2]*w2. The solutions are then ordered based 

on calculated scalar value. 

The second approach (hsel) introduces a 

hierarchy among components of eval. To 

simplify this, we map three-component eval into 

two-component tuple (e1,e2)=(eval[0]+eval[2], 

eval[1]), and compare the solutions firstly by the 

first element, and if they are equal, then by the 

second element.

4.2. Replacement Selection Procedure 

After a child is created, a solution from the 

population must be selected which will be 

replaced with the child. We created two 

procedures: nrep selects the third (the worst) 

solution from initial parent selection procedure to 

be replaced. hrep first divides the whole 

population with regard to child into four 

quadrants based on mapped eval tuples (e1,e2), 

see figure 6. 

Figure 6. Population division 

The procedure then finds the first nonempty 

quadrant (starting with quadrant marked with 1), 

and selects one random solution from that 

quadrant to replace. Such approach has been 

described in [2]. 

4.3. Modulation of Probability Function 

Initially we experimented with uniformly 

distributed random number generator (mod1).

However, after a number of experiments, we 

observed situations where some terms were 

relatively rarely used. To tackle this, during the 

optimization we periodically check frequency 

usage of each term in whole population, and 

modify probability function so that random 

number generator returns indexes of terms with 

lower usage with higher probability (mod2). As a 

third procedure (mod3), we used mod1 50% of 

the time and mod2 the other 50%. 

5. Results 

Based on the described algorithm variations 

we ran a number of experiments on real data 

with 77 courses that needed to be scheduled in 

30 terms over a 10 days period. Each time 

genetic algorithm was allowed to make 4000000 

iterations (each iteration is one selection / 

crossover / mutation / replacement cycle), which 

took about 2 minutes. We varied parent selection 

and replacement selection in three combinations 

(wsel/nrep, hsel/nrep, hsel/hrep), where wsel 

used factors w1=1 and w2=0.05. Each of those 

combinations was tested with three probability 

functions (mod1, mod2 and mod3). For each of 

those we also varied probMut and 

probSwapTerm (values were taken from the set 

{1, 2, 5}), and population sizes (values were 

taken from the set {20, 50, 100, 200}), giving a 

total of 324 experiments. Each experiment was 

repeated 3 times in order to get the average 

solution quality. 

A selection of obtained results is presented in 

table 1. Table shows obtained results as a 

function of population size, probability of 

mutation, probability of term swapping, selection 

operator and replacement type. For each 

probability function 5 of best solutions are given. 

The best found solution is obtained when 

probability function is modified so that rarely 

used terms are more likely to be generated next. 

In best solutions probMut parameter is tipically 

small (1 or 2). Worst solutions were generated 

with probMut set to 5. It also seems that 

algorithm is not too sensitive to values of 

probSwapTerm parameter. 

6. Conclusion and Future Work 

In this paper we presented an approach to 

producing exam timetables which is based on 

genetic algorithm. Genetic algorithm is an 

extremely robust method which can successfully 

provide good-enough solutions to many 

optimization problems, one of which is exam 

timetabling. We tested the created algorithm on a 

real data and obtained satisfactory results. 

The behavior of the developed algorithm was 

examined with respect to parameter variations 

and different selection and replacement 

procedures. Best results were obtained with 

moderate populations (50 to 100), small 

probMut, and by using procedures hsel, hrep and 

mod2, and all of that in a rather small amount of 

time (less than two minutes). As part of this 
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work, an open source application is being 

developed which will incorporate the developed 

algorithm, and enable a broader academic 

community to solve its exam timetabling 

problems. 
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