
Web-oriented educational system for digital circuits modeling and simulation

Marko Čupić
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, Zagreb, Croatia

Phone: +385 1 6129 548 E-mail: Marko.Cupic@fer.hr

Abstract – To foster students learning on digital logics and
digital circuits design, theory lessons should be closely
intertwined with practical exercises and experimentation. In
this paper, we will present a web oriented educational system
for digital circuits modeling and simulation – VHDLLab.
Using VHDLLab students can experiment with simple or
complex digital circuits and verify their knowledge on circuit
construction and behavior. Most important advantages of this
system when compared with commercially available VHDL
environments and simulators are small size, no-licencing, free
of charge, and design adjusted to students.

I. INTRODUCTION

When learning on digital logics and digital circuit
design, students should be given the opportunity to
practically verify what they have learned. This will not
only provide them with a feedback on the width and depth
of acquired knowledge, but will also enable them to
experiment and deepen their understanding. On faculties,
this opportunity is usually provided by the means of
laboratory exercises. When dealing with digital circuits,
exercises can be based on digital proto-boards, where
students can work with actual integrated circuits and use
wires to implement required circuits. But this is often not
attainable, since it requires additional equipment, such as
logical analyzers and wave generators, making cost of
single working place unacceptable for large student
population (courses with several hundreds or thousands of
students). Alternative is a circuit modeling and simulation.
Chip manufacturers such as Altera [1] and Xilinx [2]
provide some tools which can be used for this purpose.
Drawbacks, from the educational point of view, are
extreme complexity of software, many options, problems
with licenses and huge installation packages. To enable
students to work and practice at home, at their own pace
and time, students should each download a copy of
software and go through licensing acquisition process –
something that not many are willing to do.

To foster students' exploration and experimentation with
digital circuits based on modeling and simulation, we have
developed a web-oriented system named VHDLLab. This
system is modular, based on client-server architecture and
open source technologies, all of which are free. Its client is
extremely small in size, and can be used within any java-
enabled web browser.

This paper will describe VHDLLab and its capabilities
from the aspect of support for learning and exploration of
simple digital circuits. The paper is organized as follows.
In section 2 we will describe organization of laboratory in
courses on Digital electronics and Digital logic, and
analyze some of present problems. We will than present a
list of properties we consider important for beginners-

oriented simulation software. In section 3 we will give an
overview of VHDLLab system. In section 4 we will
analyze supported tools for circuit specification built in
VHDLLab. In section 5 we will discuss a short survey
conducted on VHDLLab users. In section 6 we will give
some future work directions. Conclusion is given in
section 7.

II. LABORATORY ORGANIZATION AND
PROBLEMS

During past five years we have been involved in

organization of two courses on Faculty of Electrical
Engineering and Computing connected with digital
circuits: Digital electronics and Digital logic [3]. Digital
electronics had an average of 600 enrolled students each
academic year. Digital logic is its successor on a new FER-
2 curriculum, and has an average of 900 enrolled students
per academic year (peak was more that 1100 students in
academic year 2005/2006 – first year the course was
given).

During this time, both courses had similar laboratories.
Students were given an opportunity to design simple and
medium complex digital circuits, describe them using
VHDL [4,5,6,7] (Very High Speed Integrated Circuit
Hardware Description Language) and simulate its
behavior. Given problems included both combinatorial and
sequential circuits (simple logical gates, multiplexors,
decoders, flip-flops, registers, counters and final state
automata).

Organization of those laboratories proved to be very
challenging. As a program of choice we selected Xilinx
ISE WebPack bundled with ModelSim simulator. Those
two programs occupy on disk more than 660 MB, and user
is required to download installation packages and updates
of also several hundred megabytes. In order to legally use
it, each student is required to obtain a license (there is a
free evaluation license available). Students that whish to
practice at home must also separately download the whole
installation package.

Since we are using shared faculty laboratories, installing
the software also proved to be very difficult. On available
computers, students have rather restricted user accounts
(far from administrator permissions), so many programs
simply do not work. This was a serious issue for us, since
ModelSim tries to write files in Windows directory, which
is off-limits for restricted users. This is the main reason
why we use rather old ISE WebPack 6 – that was the last
version we successfully installed under those restrictions.

Another issue was installation that (if user was not
extremely cautious) added some sort of USB drivers on

Windows operating system, and disabled recognition and
normal operation of users USB peripherals.

Finally, Project Navigator which is a part of ISE
WebPack proved to be not very stable, and frequently
crashed. All of this resulted with similar situation each
year: at the beginning, students were given detailed
instruction on how to obtain program, how to install it,
how to obtain a license, to save their work as often as they
can etc.

Complexity of user interface of those programs added
additional burden on students. Those are excellent
commercial programs giving its users means and options
to perform many difficult tasks. However, this has its price
with novices – instead to learn how simple logical AND
gate works, student must spend a large amount of time
trying to figure out where to add a new model, what to
press to start simulation, which kind of simulation should
be started (there are several available, ranging from simple
behavioral model simulation to simulation after placement
in FPGA circuit). And then student should also learn how
to work with simulator itself.

On course Digital electronics we organized eight
laboratory exercises, so we typically used the first one for
introduction with ISE WebPack and ModelSim, leaving us
with seven exercises for concrete work (this was a
reasonable percentage of time spent learning the software
itself). With introduction of course Digital logic,
laboratory was reorganized into only three (longer)
laboratory exercises, requiring from students to adopt
programs and simultaneously complete given tasks from
start. This proved to be a lot harder.

Taking all of the above considerations into account, we
have started a project to design a new educational system
for digital circuits modeling and simulation. Main goals
were as follows:
• emphasize educational aspects of system
• support for adequate subset of VHDL
• simple and intuitive user interface with restricted

number of options (or no options at all)
• easy to start
• easy to work with
• support for alternative circuit descriptions, such as

drawing schemas and drawing final state automata
• easy conversion of alternative circuit description into

VHDL
• no licensing
• free of charge
• small program size
• easy installation
• shared project storage accessible from Internet

Building a system with those characteristics would
enable students to work and practice at home, at their own
pace and time, and to complete laboratory exercises in
known and common environment. The last requirement,
shared project storage accessible from Internet means that
system should not store project files on local file system,
but on remote server. This will enable student to access
his/her project from any networked computer, rendering
additional benefit: student can complete laboratory
exercise at home, with no time constraints. Later, during
the formal laboratory time student can access his/her files
and demonstrate designed circuits and simulation results.

III. VHDLLAB OVERVIEW

To design and build the described system, we have
gathered a team of students already completed Digital
electronics course, and after two years of work we had a
functional system based on client server architecture, as
illustrated in Figure 1. When developing server side and
client side, there were several factors taken into account.
For client side, we wanted a simple thin client capable of
accessing project data on server and enabling user to
describe digital circuits and display simulation results.
Since many of our students use various operating systems
such as Linux, Unix, and Microsoft Windows, a natural
choice was Java programming language [8]. Initial client
implementation was using Java Applet technology [9],
requiring only a Java plug-in in user's web browser.
However, since applets have a number of limitations, and

require running web browser, we have moved to Java Web
Start technology [10], enabling us to provide a user with
desktop icon for starting client and no need for running
web browser.

Considering the server side of the system, we wanted a
program which will work on Linux based server, with
option of easy porting to another operating system, and
specifically to Microsoft Windows. Since this part of
system works with relational database and uses operating
system for starting new processes, once again, a natural
choice was Java programming language. Architecture of
server side is illustrated on Figure 2. Complete server side
was implemented as a Java web application running inside
of Apache Tomcat servlet container [11]. For data storage
system uses the MySql relational database [12], and
Hibernate object relational data mapper [13]. This

configuration was then tested on Linux and Windows
operating system and no problems were found.

As part of this project we have developed a simple
VHDL parser which enabled us to track file dependencies.
However, writing a full VHDL parser, compiler and
simulator is rather demanding task. So instead, we
searched the Internet for available open source free of

User 1

User N

VHDLLab

TCP/IPTCP/IP

TCP/IP

Figure 1. Client-server system architecture

Database

Apache Tomcat
(Servlet Container)

VHDLLAB
Servlet

Hibernate
O/R

Mapper

Internet
HTTPS

Server

MySql

Figure 2. VHDLLab server architecture

charge VHDL simulators which can be run from the
command line, which provides no separate user interface
but produce simulation result in file and which requires no
licensing. The only available simulator which meets all of
those constraints was GHDL [14] which we adopted.
Simulation results produced by this simulator are stored in
Verilog's VCD format (Value Change Dump).

Being designed as client server application, VHDLLab
has its advantages and disadvantages. Its major advantages
are already described as main goals of this project, all of
which VHDLLab meets. Disadvantage is the need for
constant connection on Internet during application usage.
Namely, in order to work with VHDLLab, student must
start its client, which connects to the VHDLLab server and
retrieves student's projects. All modifications student
makes are then immediately stored back on the server.
When simulation is required, once again simulator is
started on the server, simulation is performed and results
are sent back to client. This enables a client to be
extremely thin, but requires constant Internet connection.
Another benefit is opportunity to finish all laboratory
exercises at home, which students appreciated.

IV. SUPPORTED CIRCUIT DESCRIPTIONS

In order to have an educational value and to be as
closely bounded to the Digital logic curriculum as
possible, we have implemented three kinds of circuit
description: using VHDL, drawing schema and drawing
automata.

Description using VHDL is the foundation for all circuit
descriptions in VHDLLab, since we use VHDL simulator
for simulation tasks. An example of VHDL description of
two input AND gate is shown in Figure 3.

As can be seen on Figure 3, VHDLLab client offers a
simple but functional user interface divided in three areas.
Left there is a Project Explorer displaying all of students
projects and files inside project, hierarchically organized.
Currently, student can have tree kinds of files: circuits,
testbenches and saved simulations. Bottom area is for
simulation/compilation/status messages, and central area is
reserved for circuit editors. In this example, we can see a
standard VHDL description of two input AND gate with
propagation delay of 10 ns.

Once the student enters circuit design, a simulation
should be performed either to explore what selected circuit
does, or to verify its behavior. To perform this task student

must add a testbench, and define desired inputs. This is
shown on Figure 4.

VHDLLab will enable students to create testbenches on
two different ways. The simplest way is by clicking, and
this is illustrated on Figure 4. The system will
automatically recognize interface of circuit for which the
testbench is being created and offer appropriate signals in
drawer. More advanced users will eventually learn that
testbench is just another VHDL module having empty
interface, so VHDL support this kind of testbench creation
as well.

Simulation can be performed by right clicking testbench
and selecting Simulate. Simulation will be performed on
server, and results will be displayed in editor, as shown on
Figure 5.

Component used for display of simulation result offers a
range of commonly used tools in simulation result viewers.
For example, there are tools for zooming, fast moving and
cursors for interval measurements. Cursors can be
automatically moved to next falling edge, next rising edge,
previous falling edge or previous rising edge, given the
selected signal. Signal naming used by result viewer is
hierarchical, so that each signal can be uniquely identified.

When all simple circuits are described in VHDL,
students can describe complex circuits by creating
structural VHDL models. Structural models are models
which are build from simpler models (for example, counter
is built from flip-flops). Students are encouraged to do this
on two different ways: first to create structural VHDL
model themselves, and than to create a schema. Example
of schematic usage is shown on Figure 6, for creating two-
input XOR gate from ANDs, ORs and inverters.

Schematic offers a student a range of primitive gates
which can be used for construction of more complex

Figure 3. Writing VHDL in VHDLLab

Figure 4. Creation of testbench for two-input AND gate

Figure 5. Simulation results for two-input AND gate

circuits. Additionally, all circuits which student
himself/herself defines in project will also be available for
usage. Also, all primitive gates offered in schematic
provides a range of parameters often missing in similar
software, such as defining propagation delays. One reason
for this omission is the fact that propagation delays
specified by VHDL construct AFTER are not
synthesizable. However, they are important for behavioral
simulations and circuit explorations, so we decided to
provide this capability.

Another important aspect when learning VHDL is to
recognize the fact that pure structural VHDL model and
drawn schema are just two views of the same circuit. To
emphasize this, VHDLLab offers student an option to view
structural VHDL model for schema that student created (as
illustrated in Figure 7). This is very educational
experience, since by studying this, student can gain a
better understanding of structural models, and how they
are created.

Finally, when it comes to sequential circuit design,
students are taught to design circuits using finite state
automata theory, and implement that design by, e.g. flip-
flops. We believe that it is important to enable students to
describe circuits directly on finite state automata level (for
start), to get acquainted with this formalism. To foster this,
we have implemented a third way to describe circuit
behavior: by drawing automata. This is illustrated in
Figure 8.

This example shows Moore finite state automata with
states S0 through S4, with one input (a) and one output (y).
Initial state is S0. Here also students can request to see

how would be this circuit be specified in VHDL. Example
for automata from Figure 8 is given in Figure 9.

By studying this code, student can learn how Moore (or

Mealy) type of finite state automata can be specified in
VHDL. Given the fact that they learn to specify automata
by defining new data type in VHDL automata

specification, interesting discussion can be developed on
advantages of that kind of description over specifying each
state as a constant, as illustrated in Figure 9.

V. SURVEY ON VHDLLAB

VHDLLab was first introduced into laboratory on
course Digital logic in academic year 2007/2008. There
were 850 enrolled students, and we offered them to use
VHDLLab for laboratory exercises. From received
applications, we have selected a test group of 42 students.
Other students used ISE WebPack for laboratory exercises.
All student followed the same curriculum, and had the
same laboratory exercises. The only difference was in the
program they used: ISE WebPack or VHDLLab. When
semester ended, we have conducted a small survey to see
how students responded to VHDLLab. From 42 students,
30 of them filled provided anonymous questionnaire.

On question "What do you think on possibility of doing
laboratory exercises from home?" we obtained an average
of 1.69 (where 1 was "absolutely satisfied" and 5
"absolutely unsatisfied") and 1.48 (where 1 was
"extremely useful" and 5 was "extremely useless").

On question "How hard is the installation of
VHDLLab?" we obtained an average of 1.93 (where 1 was
"extremely easy" and 5 was "extremely difficult").

Figure 6. Schematic for two-input XOR gate

Figure 7. VHDL description of drawn schema

Figure 8. Specification of sequential circuit as automata

Figure 9. VHDL specification of automata from Figure 8

On question "What do you think on VHDLLab's user
interface?" we obtained 1.97 (where 1 was "very easy to
use" and 5 was "very hard to use") and 2.07 (where 1 was
"intuitive" and 5 was "confusing"). This acknowledges our
effort to keep user interface as simple and intuitive as
possible.

Analyzing next questions, we found out that 96.67% (29
out of 30) of students find very educational VHDLLab's
facility to view VHDL source for testbench, same amount
of students find very educational VHDLLab's facility to
view VHDL source for schema and 83.33% (25 out of 30)
find very educational VHDLLab's facility to view VHDL
source for automata.

On the question "If you had to do additional laboratory
exercises, and if you could choose again, would you
switch to ISE WebPack, or would you stay with
VHDLLab, and why?", 29 students answered they would
continue to use VHDLLab. Only one student answered he
would switch to ISE WebPack, and provided interesting
reason: "ISE WebPack is commercial tool used in industry;
if I learn it now, I can benefit from it later.". Summing up
answers of students which would stay with VHDLLab, we
came to following arguments:
• It is simple.
• It is stable.
• I can work at home, when I want.
• It occupies almost no space on disk.
• There is no time limit on laboratory exercise. If I can

not do something, I have all the time I need to figure
it out.

• Group work. I can do laboratory exercise with the
help of my friends.

• Consultations with others.
• It provides right amount of options for practical

learning of Digital logics. Too many options only
confuse beginners.

By analyzing those results, we believe we have
developed a truly simple and educational system for digital
circuits modeling and simulation, appropriate for students
learning basic topics of Digital logics: Boolean algebra,
simple combinatorial circuits such as multiplexors,
decoders and adders, and simple sequential circuits, such
as flip-flops, registers, counters and similar.

VI. FURTHER WORK

There are many small things which can be improved in
VHDLLab, and after actively working with this software
for one academic year we have collected a list of things to
improve. However, there are also some new features which
should be added. During the course of Digital logic
students are taught on standard programmable circuits,
such as CPLDs and FPGAs. When developing for FPGA,
Xilinx ISE WebPack can show which CLBs (Configurable
Logic Blocks) are utilized for specific circuit
implementation, and provide a detailed overview (this
latter, unfortunately, not with an evaluation license). For
students learning on functions and circuits implementation,
this can be extremely educational. So, this is set high on
our to-do list: enable students to see, given some specific
rather simple CLB, how would their design be
implemented in FPGA.

VII. CONCLUSION

In this paper we have described a web-oriented
educational system for digital circuits modeling and
simulation: VHDLLab, which was built using open source
and free of charge technologies. The main reason for its
development was to design a system that emphasizes
educational aspects, and is appropriate for beginners in
Digital electronics and Digital logic.

VHDLLab has many limitations when compared with
commercially available software, such as Xilinx ISE
WebPack. However, many of those limitations were
actually purposely imposed, to make the design and
simulation of simple digital circuits as easy as possible,
and especially appropriate for beginners.

From the other side, VHDLLab has some other features
missing in commercially available software, whose sole
purpose is to help student to learn and experiment with
digital circuits and its design. The system was founded on
VHDL, and for simulation purposes uses freely available
command line VHDL simulator.

Given its small client footprint and shared project
storage, VHDLLab enables students to work from home,
when they want, and as long as they need to accomplish
laboratory exercise. This alone resulted with very satisfied
users. VHDLLab also makes client installation in faculty
laboratories extremely simple. Just for comparison, three
years ago, we had to install Xilinx ISE WebPack on 120
separate computers, which proved to be extremely time
consuming. Installation of VHDLLab is unnecessary,
thanks to Java WebStart technology, which only requires a
Java to be installed (and this is true for all laboratory
computers).

ACKNOWLEDGMENTS

The author would like to thank following students: Ivan
Alić, Miro Bezjak, Davor Delač, Boris Ožegović,
Aleksandar Prokopec and Tomislav Rajaković, who
carried the biggest part of designing, programming,
debugging and improving VHDLLab.

REFERENCES

 [1] Altera, http://www.altera.com, visited on 2008-01-20.
 [2] Xilinx, http://www.xilinx.com, visited on 2008-01-20.
 [3] Digital logic, course, http://www.fer.hr/predmet/diglog,

visited od 2007-12-10.
 [4] P. J. Ashenden, The Designer's Guide to VHDL, 2nd Edn.,

Morgan Kaufmann, San Francisco, 2002.
 [5] S. Brown and Z. Vranesic, Fundamentals of Digital Logic

with VHDL Design, McGraw Hill, Toronto, Canada, 2000.
 [6] P. Walsh, “Integrating vhdl into a first course in logic

design,” in IEEE Canadian Conference on Electrical and
Computer Engineering, Edmonton, Canada, 1999, pp.
1531–1534.

 [7] S. Areibi, “A First Course in Digital Design using VHDL
and Programmable Logic.” Proceedings of Frontiers in
Education Conference, 2001, pp. 19-23.

 [8] Java, http://java.sun.com, visited on 2008-01-10.
 [9] Java Applets, http://java.sun.com/applets/, visited on 2008-

01-10.
[10] Java Web Start, http://java.sun.com/products/javawebstart/,

visited on 2008-01-10.
[11] Apache Tomcat, http://tomcat.apache.org/, visited on 2008-

01-10.
[12] MySql, http://www.mysql.com/, visited on 2008-01-10.
[13] Hibernate, http://www.hibernate.org, visited on 2008-01-

10.
[14] T. Gingold, GHDL, http://ghdl.free.fr/, visited on 2008-01-

10.

