NESCUME —A SYSTEM FOR M ANAGING STUDENT
ASSIGNMENTS

Vlado Glavini, MarkoCupi¢ and Stjepan Gro$

Faculty of Electrical Engineering and Computing,
Department of Electronics, Microelectronics, Congpwnd Intelligent Systems,
University of Zagreb, Zagreb, Croatia

{vlado.glavinic|marko.cupic|stjepan.gros}@fer.hr

ABSTRACT

This paper describes Nescume — a Web enabled padkagnanaging student (lab) assignments. The
package has been designed targeting a humber ofreggents met in teaching software-based courses.
The paper discusses objectives for Nescume devetppresents its capabilities such as source code
comparison for cheating detection, testing of dgwetl program and source code archiving, and shows
its architecture. Furthermore, the paper explaimsvthe system can be used to improve both theeours
as well as students quality. Integration with thmurse management software is also considered, as
illustrated by the WODLS package.

KEYWORDS

testing of student work, source code comparisor-Bviabled laboratory management, plagiarism

1.INTRODUCTION

In the last decade programming permeated into guiember of university courses, what is
particularly true for the area of computer scierteglowing the progress in computing power,
some other more classical areas evolved as wdll ftirmal modeling and verification for both
software and hardware. For the latter, the use avflware description languages (HDLS)
additionally supports circuit/systems simulatiom @ more abstract level this reduces to (i)
writing a program, be it either production softwarespecification, and (ii) testing. Programs
are typically tested for errors, specifications #memally verified (e.g. using model checkers)
and hardware is typically simulated to assessadtsectness, time delays, performance etc. In
many courses students are confronted with thodes thgough a course's laboratory, thus
inducing the creation of a system for supportingpaated verification of student solutions.

With the popularization of the Internet, studerda aow much easier share their knowledge but
are also increasingly tempted to cheat by distimigusolutions to assigned problems. The
"management of cheating" is defined as a threeespagcess that consists of (i) cheating pre-
emption, (ii) cheating detection and (iii) respomgeheating [1]. We believe that software for
cheating detection can be used in the first twgestasince (i) its mere existence discourages
students to even try to cheat, and (ii) it is sggubto effectively detect those who cheated
anyway. For these and other reasons to be expldated we have developed Nescume
(NEtwork based Software acCUMulation and Evalugtiena system for managing student
assignment, which is one building block of our coemgnsive effort to ensure efficient and
objective student treatment within our courses.afisaside, let us mention another system —
WODLS (Web Oriented Distance Learning System) —had previously built with the same
objectives, which has been used for some time@réa testing student knowledge [2], [3].

2.MOTIVATION

Nescume has been designed by having the havingind the following goals, which are
characteristic of the educational process:

* Archiving of student assignment solutienthe system should archive all the submitted
work and track all the necessary data about ith@utab exercise, course, academic
year, etc.).

¢ Cheating elimination— the system should either prevent or detect tlagonity of
attempts to cheat, and specifically to plagiari#k [5]. Cheating is threatened, at least
partially, by having students know that their wavkl be archived (what generates a
psychological barrier) and by using source code paosison methods to detect
suspiciously similar programs.

e Testing student solutions for correctnesthe system must provide easily configurable
means for assessing student solutions, either fiyrmaa for some typical errors. The
tests can be prepared beforehand, as part of aectal.

e Suggesting quality improvemenighe system has to provide means to analyzergtude
solutions and provide them with quality improvemenggestions (e.g. by critiquing
[6]). E.q. if a student submits a C source codearmalysis could be performed to see if
insecure functions are wused instead of secure ofsscpy/gets VS.
strncpy /fgets). Coding style can also be assessed. This caruegm students to
write secure and clean code, and on the long ritivate quality programmers.

e Ensuring archive format restrictions the system should enable upload of document
or/and (various formats of) archives, and theirtennverification.

3. KNOWLEDGE ASSESSMENT BYINTERPERSONAL DISCUSSION

To assess a student understanding of a softwarexXaizise and especially the originality of
her/his solution, she/he is typically questionedyiol is usually performed in a three-step
process:

1. Ask the student to demonstrate her/his programadiper under typical error-disclosing
conditions.

2. Ask the student what the program is supposed tamihow it would do it under some
hypothetical conditions.

3. Ask the student to orally comment the source catbemitted, and to identify the parts
of code responsible for some behavior observeaduts run.

Step 1 is usually performed by instructing the studhow to set up the testing environment, and
by subsequently observing and comparing the progypenation with the expected behavior.
The examiner usually checks both the program ositpnt time constraints (if the program
includes time dependent operations). Because oéxheniner's time limitations, all scenarios
cannot be tested, which is the reason why thestegtis so important.

In step 2 the student understanding of the probéssigned is assessed. A certain typical
situation is specified, and the student is theredgk explain how her/his program would react
under these setting (without consulting the sowmae), what can be further experimentally

verified. If the program performs differently thempected (or even worse, differently than the
student claimed it would), this can be further smedl in step 3.

In the final step 3, an attempt is made to discahese students who learned the program
functionality and took someone other's solutiorfeatively being ignorant on the role of
particular code portions. E.g. the functimctvfrom applied on sockets blocks the program
execution until delivering data. A part of the gs&id problem was to implement program
blocking for a predefined amount of time. The solutis illustrated in Figure 1, where the
functionselect is used to implement . .

- . . select(socket, time_constraint, ...)
the limited time blocking. The studer ¢ notTimeout() Then

was asked where in the code tl Recyfrom(socket) /ito read a packet
blocking occurs (while testing showe |f packetReceivedSuccessfully Then

that the time-limited blocking was behaviourA // process data
indeed implemented as in Figure 1 Else
The student reported thaecvfrom behaviourB // report error
blocks execution. She/he coul Elggd If

however, not explain why the observe . .

. . behaviourC // timeout occurred
program behavior was behaviour(g4
which was a clear indication that she/l
did not understand whatelect was
used for, and that he did not write th
program himself.

Figure 1. Pseudo-code for limited time socket
operation

Using the described methodology, a rather thorgugi¥amination can be performed. The
drawbacks are, however, twofold: the time needeskéonine one student is unacceptably large
(about 30 minutes) and objectivity is compromisetthére is more than one assistant (meaning
different criteria, longer or shorter questionipty;).

4.DETECTION OF PLAGIARISM

In recent years plagiarism (considered as a formohefating [7]) has become more common
among students. Some studies [8], [9], [10] camdidtressing conclusions. E.g. the following
misdeeds are by students perceived as not toouseoffences [9]: (i) collaboration on

assignments meant to be completed individually), [fiosting to Internet newsgroups for
assistance, or (iii) submitting a friend’s assignirieom past running of the subject. To prevent
cheating [11], [7], steps are to be undertakeniszoder the student involved [12], which

usually means that sources submitted by studerss lmeucompared.

There exist already a number of freely availablere® comparison programs like Comparator-
2.5 [13], CtCompare-1.3 [14], Sherlock [15] and Md46]. Table 1 summarizes plagiarism
detection methods used by these programs. Howesgne of the above programs are
erroneous, and some cannot be integrated intodestumanagement system. Also, some of the
programs are language dependent (e.g. having a-@rpcessor).

Table 1. Plagiarism detection software and thethods

Program Plagiarism detection method

Comparator Computation of hashes of overlappingesllong shreads

CtCompare Token sequence matching

Sherlock Calculates digital signatures from wontdlese

MOSS Calculates k-gram fingerprints [17]

Nescume SC protol Heuristic token stream matchittgaertainty factors with language
dependant preprocessing

There are also some other questions to be addrdésedi) comparison flexibility (e.g.
comparing program sources vs. HDL specificatioms) @) source code transformations (e.g. it
is not obvious how to classify syntactically ditfet, but necessarily semantically identical
solutions to particular assignments). Regardinddtier, it should be noted that an assignment
could be successfully programmed by different seucodes, provided it behaves in the
expected manner. This consequently defines twoemrds for the "plagiarism detector”
functionality: find syntactically identical sourcéahat any savvy cheater would avoid), and
find semantically identical sources (what is othieerexpected as the correct solution). Just as
humans would, the solution should obviously be tfoe "plagiarism detector” to search for
patterns and structures in sources, what is impieeden the Nescume prototype.

5.NESCUME ARCHITECTURE AND |IMPLEMENTATION
5.1. Architecture

of 2 number of module
(see Figure 2.): the 4 [-~ :
controller module is the y y y
core of the system; the » CONTROLLER [« CROSRAT
database module make -

a persistence layer fo i ! +—l

used data anc

communicates with the| . INTERFAGE WEB USER INTERFACE DATABASE
database proper, th

ﬁ:gg{j?én r?ﬁ;ﬁggz Figure 2. Architecture of Nescume

student programs, the

testing module performs program testing, the shityjlachecking module performs source
comparison, and the two user interface moduleslesaystem accessibilty over the Internet
(Web module) and over command-line (Command-Linedute). Such architecture resulted
from the following two requirements: support of gyable program test implementations, and
pluggable plagiarism detection solutions.

5.2. Model of Lab Exercises

The Laboratory consists of one or more LaboratoxgrEises. Each Laboratory Exercise is
subdivided into one or more Tasks, while each Tamktains one or more Jobs. A Job is an
elementary unit of student work. In each Laboratéxgrcise a student can be assigned one or
more Tasks to solve, what includes solving all ofask's Jobs. A Job is solved when its
solution is both uploaded onto a server and lodathat the student cannot further change it.
E.g. for a Lab Exercise "Communication in the Datak Layer" the first Task could be "ARP
protocol” that in turn consists of two jobs: "ARBténer" (retrieving and printing ARP packets
from the network), and "ARP query" (sending ARP riggeand printing responses). A second
Task could be "RARP protocol” with a similar jolustture as before.

5.3. Implementation Details

Nescume has been built having in mind portabilitgd apen source tools. It is implemented in
Java, on top of AppFuse framework [18], as a Welliegdion. It is currently running under the
Linux operating system in Apache Tomcat [19], asdsuthe open source relational database
MySql [20].

6. How NESCUME ENHANCES COURSE EXECUTION

Using Nescume as a part of lab exercises can batgrto efficiency. When a student completes
her/his work, she/he uploads it onto the serverchwin turn automatically starts the execution
of related tests, and informs the student on thalte A typical test is the compilability test —
the feasibility for a student source to be compiteéd an executable program on an independent
system. If the source passes it, a series of pmograrrectness tests can be performed
automatically, thus eliminating the need for theistant to instruct each student how to set up
the test environment and demonstrate the sourceatness. This practically means that there is
no need to perform step 1 of the previously desdritesting procedure. If some test fails, the
student can analyze (using test description andlisdsher/his source and fix it. Nescume
supports description of tests and their interdepraigs, and can execute tests in correct order.
The system is also extensible, allowing new testset added easily. For a given Task (or Job),
tests to be performed are described _; ..,

appropriate test-descriptors, which a <prepare name="prep" jobs="1" />

XML files Containing all of the <Compi|e name:"comp”ationl"

information needed to execute tt dependsOn="prep" compiler="gcc"

requested tests (see Figure 3). F options="-Wall -pedantic”

tests which are inherently insecur outputName="arp.exe" sources="1"

(such as compiling and runnin compiledid="1"/> o o

programs requiring administrativ EChedeQ”a"E’, name_|= qualityVerification

perr_nissions), an isol_ated te p?éj;rgnfg"g;liﬁgpz)%tglrlosll""

environment can be easily built b g5 ces=1" />

using some PC emulation softwal «test name="test1"

like e.g. VMWare [21]. Having dependsOn="compilationl" />

Nescume track all test executions, </tests>

something goes wrong, the author

the offending program can then k Figure 3. An example of multiple test definitiontfwi
easily found. interdependency specification

Nescume is compliant with all of the requests sfate section 2, and includes an early
implementation of source code similarity checkiray plagiarism detection. Although this
implementation isn't an actual threat to cheatges),(the fact that it exists has proven as a
rather strong cheating deterrent.

7.CONCLUSION

Nescume is a system intended to ensure efficiahbljective examination of student lab work.
It is already successfully used at the Faculty ¢déctical Engineering and Computing.
Combined with WODLS's capabilities to examine studenowledge through quizzes, further
objectivization of the examination process can ti@eved (this is especially true for step 2 of
the testing procedure). It has potential for widmage, because it can support a variety of
courses. E.g. instead of checking C program covesst either formal checks of uploaded
model descriptions or simulation of uploaded ham@widesign could be performed.

Nescume must be further improved e.g. by devisingether source comparison algorithm,
whose performance should be tested against nop€&€dgurces. We plan to perform this on a
batch of VHDL sources to be generated in a digiesign lab.

ACKNOWLEDGEMENTS

This work has been carried out within project 0@5®Bemantic Web as Information
Infrastructure Enablerfunded by the Ministry of Science, Education &mibrt of the Republic
of Croatia.

REFERENCES

(1]

(2]

(3]
(4]
(5]

(6]

(7]
(8]

El

(10]

(11]

[12]

(13]
[14]
[15]
[16]
(17]

(18]
[19]
[20]
[21]

Dick, M., Sheard, J., Bareiss, C., Carter,Jayce, D., Harding, T., Laxer, C. "Addressing
Student Cheating: Definitions and SolutionACM SIGCSE BulletinWorking group reports
from ITiICSE on Innovation and technology in compugeience education, Volume 35, Issue 2,
June 2002, pp. 172-184.

Glavini¢, V, Cupic’, M, Gros, S. “WODLS — A Web Oriented Distance lréag System” Proc.
12th IEEE Mediterranean Electrotechnical Confererc®IELECON 2004Yol. I, May 12-15,
2004, pp. 747-750.

Gro§, S.Distance Learning System Based on Service OrieAethitecture MSc Thesis,
Faculty of Electrical Engineering and Computing,ivénsity of Zagreb, Zagreb, 2004.

Harris, R. Anti-Plagiarism Strategies for Research Papers
http://www.virtualsalt.com/antiplag.htm, 2002.

Clough, P.Plagiarism in natural and programming languages:@rerview of current tools and
technologiesResearch Memoranda: CS-00-05, Department of Camfcience, University of
Sheffield, UK, 2000. http://www.dcs.shef.ac.uk/~gjbie/plagiarism/

Qiu, R, Riesbeck, C. K. "Making critiquing Ptamal: Incremental Development of Educational
Critiquing System”, inProc. Int'l Conf. on Intelligent User Interfaces IJI'04, Madeira,
Funchal, Portugal, January 13-16, 2004, pp. 304-306

Harris, J. K. "Plagiarism in computer scienaricses", inProc. Conf. on Ethics in the computer
age November 1994, pp. 133-135.

Dick, M., Sheard, J., Markham, S. "Is it okay ¢heat? — the views of postgraduate students”,
ACM SIGCSE Bulletin, Proc. 6th Annual Conf. on hatmn and Technology in Computer
Science Education/ol. 33, Issue 3, June 2001, pp. 61-64.

Sheard, J., Dick, M., Markham, S., Macdonald, Walsh, M. "Cheating and plagiarism:
perceptions and practices of first year IT studeraCM SIGCSE Bulletin, Proc. 7th Annual
Conf. on Innovation and Technology in Computer r@seEducationVol. 34, Issue 3, June
2002, pp. 183-187.

Sheard, J., Dick, M. "Influences on cheatimgcpice of graduate students in IT courses: what ar
the factors?"ACM SIGCSE Bulletin, Proc. 8th Annual Conf. on hatmn and Technology in
Computer Science Educatiovipl. 35, Issue 3, June 2003, pp. 45-49.

Kaczmarczyk, L. C. "Accreditation and studessessment in distance education: why we all
need to pay attention’ACM SIGCSE BulletinProc. 6th Annual Conf. on Innovation and
Technology in Computer Science Educat\al, 33, Issue 3, June 2001, pp. 113-116.

Carter, J., Ala-Mutka, K., Fuller, U., Dick, MEnglish, J., Fone, W., Sheard, J. "How shall we
assess this?'Working group reports from ITICSE on Innovation aedhnology in computer
science educatignThessaloniki, Greece, June 30 - July 02, 200Blighed asACM SIGCSE
Bulletin, Vol. 35, Issue 4, June 2003, pp. 107-123.

Comparator(Source comparison software), http://www.catb-eegf/comparator/
CtCompareg(Source comparison software), http://minnie.tutggRrograms/Ctcompare/
Sherloclk{Source comparison software), http://www.cs.usyd.@a~scilect/sherlock/
Moss(Source comparison software), http://www.cs.berkeldu/~aiken/moss.html

Schleimer, S., Wilkerson, D. S., Aiken, A. “Wiowing: local algorithms for document
fingerprinting”, Proc. 2003 ACM SIGMOD Int'l Conf. on Managemenbafa, San Diego, CA,
June 2003, pp.76-85.

AppFuse Frameworlhttps://appfuse.dev.java.net/

Apache Jakarta TomcéBervlet container), http://jakarta.apache.orgtaih

MySQL, http://www.mysgl.com/

VMWare(Virtual computer emulator), http://www.vmware.com

