
NESCUME – A SYSTEM FOR MANAGING STUDENT
ASSIGNMENTS

Vlado Glavinić, Marko Čupić and Stjepan Groš

Faculty of Electrical Engineering and Computing,
Department of Electronics, Microelectronics, Computer and Intelligent Systems,

University of Zagreb, Zagreb, Croatia

{vlado.glavinic|marko.cupic|stjepan.gros}@fer.hr

ABSTRACT
This paper describes Nescume – a Web enabled package for managing student (lab) assignments. The
package has been designed targeting a number of requirements met in teaching software-based courses.
The paper discusses objectives for Nescume development, presents its capabilities such as source code
comparison for cheating detection, testing of developed program and source code archiving, and shows
its architecture. Furthermore, the paper explains how the system can be used to improve both the course
as well as students quality. Integration with the course management software is also considered, as
illustrated by the WODLS package.

KEYWORDS
testing of student work, source code comparison, Web-enabled laboratory management, plagiarism

1. INTRODUCTION
In the last decade programming permeated into quite a number of university courses, what is
particularly true for the area of computer science. Following the progress in computing power,
some other more classical areas evolved as well, like formal modeling and verification for both
software and hardware. For the latter, the use of hardware description languages (HDLs)
additionally supports circuit/systems simulation. On a more abstract level this reduces to (i)
writing a program, be it either production software or specification, and (ii) testing. Programs
are typically tested for errors, specifications are formally verified (e.g. using model checkers)
and hardware is typically simulated to assess its correctness, time delays, performance etc. In
many courses students are confronted with those tasks through a course's laboratory, thus
inducing the creation of a system for supporting automated verification of student solutions.

With the popularization of the Internet, students can now much easier share their knowledge but
are also increasingly tempted to cheat by distributing solutions to assigned problems. The
"management of cheating" is defined as a three-stage process that consists of (i) cheating pre-
emption, (ii) cheating detection and (iii) response to cheating [1]. We believe that software for
cheating detection can be used in the first two stages, since (i) its mere existence discourages
students to even try to cheat, and (ii) it is supposed to effectively detect those who cheated
anyway. For these and other reasons to be explained later, we have developed Nescume
(NEtwork based Software acCUMulation and Evaluation) – a system for managing student
assignment, which is one building block of our comprehensive effort to ensure efficient and
objective student treatment within our courses. As an aside, let us mention another system –
WODLS (Web Oriented Distance Learning System) – we had previously built with the same
objectives, which has been used for some time already for testing student knowledge [2], [3].

2. MOTIVATION
Nescume has been designed by having the having in mind the following goals, which are
characteristic of the educational process:

• Archiving of student assignment solutions – the system should archive all the submitted
work and track all the necessary data about it (author, lab exercise, course, academic
year, etc.).

• Cheating elimination – the system should either prevent or detect the majority of
attempts to cheat, and specifically to plagiarize [4], [5]. Cheating is threatened, at least
partially, by having students know that their work will be archived (what generates a
psychological barrier) and by using source code comparison methods to detect
suspiciously similar programs.

• Testing student solutions for correctness – the system must provide easily configurable
means for assessing student solutions, either formally or for some typical errors. The
tests can be prepared beforehand, as part of a course lab.

• Suggesting quality improvements – the system has to provide means to analyze student
solutions and provide them with quality improvement suggestions (e.g. by critiquing
[6]). E.g. if a student submits a C source code, an analysis could be performed to see if
insecure functions are used instead of secure ones (strcpy/gets vs.
strncpy /fgets). Coding style can also be assessed. This can encourage students to
write secure and clean code, and on the long run cultivate quality programmers.

• Ensuring archive format restrictions – the system should enable upload of document
or/and (various formats of) archives, and their content verification.

3. K NOWLEDGE ASSESSMENT BY INTERPERSONAL DISCUSSION
To assess a student understanding of a software lab exercise and especially the originality of
her/his solution, she/he is typically questioned, which is usually performed in a three-step
process:

1. Ask the student to demonstrate her/his program operation under typical error-disclosing
conditions.

2. Ask the student what the program is supposed to do, and how it would do it under some
hypothetical conditions.

3. Ask the student to orally comment the source code submitted, and to identify the parts
of code responsible for some behavior observed during its run.

Step 1 is usually performed by instructing the student how to set up the testing environment, and
by subsequently observing and comparing the program operation with the expected behavior.
The examiner usually checks both the program outputs and time constraints (if the program
includes time dependent operations). Because of the examiner's time limitations, all scenarios
cannot be tested, which is the reason why the next step is so important.

In step 2 the student understanding of the problem assigned is assessed. A certain typical
situation is specified, and the student is then asked to explain how her/his program would react
under these setting (without consulting the source code), what can be further experimentally

verified. If the program performs differently then expected (or even worse, differently than the
student claimed it would), this can be further analyzed in step 3.

In the final step 3, an attempt is made to discover those students who learned the program
functionality and took someone other's solution, effectively being ignorant on the role of
particular code portions. E.g. the function recvfrom applied on sockets blocks the program
execution until delivering data. A part of the assigned problem was to implement program
blocking for a predefined amount of time. The solution is illustrated in Figure 1, where the
function select is used to implement
the limited time blocking. The student
was asked where in the code the
blocking occurs (while testing showed
that the time-limited blocking was
indeed implemented as in Figure 1)?
The student reported that recvfrom
blocks execution. She/he could,
however, not explain why the observed
program behavior was behaviourC,
which was a clear indication that she/he
did not understand what select was
used for, and that he did not write this
program himself.

Using the described methodology, a rather thoroughly examination can be performed. The
drawbacks are, however, twofold: the time needed to examine one student is unacceptably large
(about 30 minutes) and objectivity is compromised if there is more than one assistant (meaning
different criteria, longer or shorter questioning, etc).

4. DETECTION OF PLAGIARISM
In recent years plagiarism (considered as a form of cheating [7]) has become more common
among students. Some studies [8], [9], [10] came to distressing conclusions. E.g. the following
misdeeds are by students perceived as not too serious offences [9]: (i) collaboration on
assignments meant to be completed individually, (ii) posting to Internet newsgroups for
assistance, or (iii) submitting a friend’s assignment from past running of the subject. To prevent
cheating [11], [7], steps are to be undertaken to discover the student involved [12], which
usually means that sources submitted by students must be compared.

There exist already a number of freely available source comparison programs like Comparator-
2.5 [13], CtCompare-1.3 [14], Sherlock [15] and Moss [16]. Table 1 summarizes plagiarism
detection methods used by these programs. However, some of the above programs are
erroneous, and some cannot be integrated into a student management system. Also, some of the
programs are language dependent (e.g. having a C pre-processor).

select(socket, time_constraint, …)
If notTimeout() Then
 Recvfrom(socket) //to read a packet
 If packetReceivedSuccessfully Then
 behaviourA // process data
 Else
 behaviourB // report error
 End If
Else
 behaviourC // timeout occurred
End If

Figure 1. Pseudo-code for limited time socket
operation

Table 1. Plagiarism detection software and their methods

Program Plagiarism detection method
Comparator Computation of hashes of overlapping n-lines long shreads
CtCompare Token sequence matching
Sherlock Calculates digital signatures from word series
MOSS Calculates k-gram fingerprints [17]
Nescume SC proto1 Heuristic token stream matching with certainty factors with language

dependant preprocessing

There are also some other questions to be addressed like (i) comparison flexibility (e.g.
comparing program sources vs. HDL specifications) and (ii) source code transformations (e.g. it
is not obvious how to classify syntactically different, but necessarily semantically identical
solutions to particular assignments). Regarding the latter, it should be noted that an assignment
could be successfully programmed by different source codes, provided it behaves in the
expected manner. This consequently defines two extremes for the "plagiarism detector"
functionality: find syntactically identical sources (what any savvy cheater would avoid), and
find semantically identical sources (what is otherwise expected as the correct solution). Just as
humans would, the solution should obviously be for the "plagiarism detector" to search for
patterns and structures in sources, what is implemented in the Nescume prototype.

5. NESCUME ARCHITECTURE AND IMPLEMENTATION

5.1. Architecture

Nescume is composed
of a number of modules
(see Figure 2.): the
controller module is the
core of the system; the
database module makes
a persistence layer for
used data and
communicates with the
database proper, the
program repository
module manages
student programs, the
testing module performs program testing, the similarity checking module performs source
comparison, and the two user interface modules enables system accessibilty over the Internet
(Web module) and over command-line (Command-Line module). Such architecture resulted
from the following two requirements: support of pluggable program test implementations, and
pluggable plagiarism detection solutions.

5.2. Model of Lab Exercises

The Laboratory consists of one or more Laboratory Exercises. Each Laboratory Exercise is
subdivided into one or more Tasks, while each Task contains one or more Jobs. A Job is an
elementary unit of student work. In each Laboratory Exercise a student can be assigned one or
more Tasks to solve, what includes solving all of a Task's Jobs. A Job is solved when its
solution is both uploaded onto a server and locked so that the student cannot further change it.
E.g. for a Lab Exercise "Communication in the Data Link Layer" the first Task could be "ARP
protocol" that in turn consists of two jobs: "ARP listener" (retrieving and printing ARP packets
from the network), and "ARP query" (sending ARP queries and printing responses). A second
Task could be "RARP protocol" with a similar job structure as before.

5.3. Implementation Details

Nescume has been built having in mind portability and open source tools. It is implemented in
Java, on top of AppFuse framework [18], as a Web application. It is currently running under the
Linux operating system in Apache Tomcat [19], and uses the open source relational database
MySql [20].

TESTING FACILITY
SIMILARITY CHECKING

FACILITY

PROGRAM
REPOSITORY

DATABASEWEB USER INTERFACE
COMMAND-LINE USER

INTERFACE

CONTROLLER

Figure 2. Architecture of Nescume

6. HOW NESCUME ENHANCES COURSE EXECUTION
Using Nescume as a part of lab exercises can contribute to efficiency. When a student completes
her/his work, she/he uploads it onto the server, which in turn automatically starts the execution
of related tests, and informs the student on the results. A typical test is the compilability test –
the feasibility for a student source to be compiled into an executable program on an independent
system. If the source passes it, a series of program correctness tests can be performed
automatically, thus eliminating the need for the assistant to instruct each student how to set up
the test environment and demonstrate the source correctness. This practically means that there is
no need to perform step 1 of the previously described testing procedure. If some test fails, the
student can analyze (using test description and results) her/his source and fix it. Nescume
supports description of tests and their interdependencies, and can execute tests in correct order.
The system is also extensible, allowing new tests to be added easily. For a given Task (or Job),
tests to be performed are described in
appropriate test-descriptors, which are
XML files containing all of the
information needed to execute the
requested tests (see Figure 3). For
tests which are inherently insecure
(such as compiling and running
programs requiring administrative
permissions), an isolated test
environment can be easily built by
using some PC emulation software
like e.g. VMWare [21]. Having
Nescume track all test executions, if
something goes wrong, the author of
the offending program can then be
easily found.

Nescume is compliant with all of the requests stated in section 2, and includes an early
implementation of source code similarity checking for plagiarism detection. Although this
implementation isn't an actual threat to cheaters (yet), the fact that it exists has proven as a
rather strong cheating deterrent.

7. CONCLUSION
Nescume is a system intended to ensure efficient and objective examination of student lab work.
It is already successfully used at the Faculty of Electrical Engineering and Computing.
Combined with WODLS's capabilities to examine student knowledge through quizzes, further
objectivization of the examination process can be achieved (this is especially true for step 2 of
the testing procedure). It has potential for wide usage, because it can support a variety of
courses. E.g. instead of checking C program correctness, either formal checks of uploaded
model descriptions or simulation of uploaded hardware design could be performed.

Nescume must be further improved e.g. by devising a better source comparison algorithm,
whose performance should be tested against non-C-type sources. We plan to perform this on a
batch of VHDL sources to be generated in a digital design lab.

ACKNOWLEDGEMENTS
This work has been carried out within project 0036033 Semantic Web as Information
Infrastructure Enabler, funded by the Ministry of Science, Education and Sport of the Republic
of Croatia.

<tests>
 <prepare name="prep" jobs="1" />
 <compile name="compilation1"
 dependsOn="prep" compiler="gcc"
 options="-Wall -pedantic"
 outputName="arp.exe" sources="1"
 compiledId="1" />
 <checkQuality name="qualityVerification"
 dependsOn="compilation1"
 program="splint" options=""
 sources="1" />
 <test name="test1"
 dependsOn="compilation1" />
</tests>

Figure 3. An example of multiple test definition with
interdependency specification

REFERENCES
[1] Dick, M., Sheard, J., Bareiss, C., Carter, J., Joyce, D., Harding, T., Laxer, C. "Addressing

Student Cheating: Definitions and Solutions", ACM SIGCSE Bulletin, Working group reports
from ITiCSE on Innovation and technology in computer science education, Volume 35, Issue 2,
June 2002, pp. 172-184.

[2] Glavinić, V, Čupić, M, Groš, S. “WODLS – A Web Oriented Distance Learning System”, Proc.
12th IEEE Mediterranean Electrotechnical Conference – MELECON 2004, Vol. II, May 12-15,
2004, pp. 747-750.

[3] Groš, S. Distance Learning System Based on Service Oriented Architecture, MSc Thesis,
Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, 2004.

[4] Harris, R. Anti-Plagiarism Strategies for Research Papers,
http://www.virtualsalt.com/antiplag.htm, 2002.

[5] Clough, P. Plagiarism in natural and programming languages: an overview of current tools and
technologies, Research Memoranda: CS-00-05, Department of Computer Science, University of
Sheffield, UK, 2000. http://www.dcs.shef.ac.uk/~cloughie/plagiarism/

[6] Qiu, R, Riesbeck, C. K. "Making critiquing Practical: Incremental Development of Educational
Critiquing System", in Proc. Int'l Conf. on Intelligent User Interfaces – IUI'04, Madeira,
Funchal, Portugal, January 13-16, 2004, pp. 304-306.

[7] Harris, J. K. "Plagiarism in computer science courses", in Proc. Conf. on Ethics in the computer
age, November 1994, pp. 133-135.

[8] Dick, M., Sheard, J., Markham, S. "Is it okay to cheat? – the views of postgraduate students",
ACM SIGCSE Bulletin, Proc. 6th Annual Conf. on Innovation and Technology in Computer
Science Education, Vol. 33, Issue 3, June 2001, pp. 61-64.

[9] Sheard, J., Dick, M., Markham, S., Macdonald, I., Walsh, M. "Cheating and plagiarism:
perceptions and practices of first year IT students", ACM SIGCSE Bulletin, Proc. 7th Annual
Conf. on Innovation and Technology in Computer Science Education, Vol. 34, Issue 3, June
2002, pp. 183-187.

[10] Sheard, J., Dick, M. "Influences on cheating practice of graduate students in IT courses: what are
the factors?", ACM SIGCSE Bulletin, Proc. 8th Annual Conf. on Innovation and Technology in
Computer Science Education, Vol. 35, Issue 3, June 2003, pp. 45-49.

[11] Kaczmarczyk, L. C. "Accreditation and student assessment in distance education: why we all
need to pay attention", ACM SIGCSE Bulletin, Proc. 6th Annual Conf. on Innovation and
Technology in Computer Science Education, Vol. 33, Issue 3, June 2001, pp. 113-116.

[12] Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English, J., Fone, W., Sheard, J. "How shall we
assess this?", Working group reports from ITiCSE on Innovation and technology in computer
science education, Thessaloniki, Greece, June 30 - July 02, 2003, published as ACM SIGCSE
Bulletin, Vol. 35, Issue 4, June 2003, pp. 107-123.

[13] Comparator (Source comparison software), http://www.catb.org/~esr/comparator/

[14] CtCompare (Source comparison software), http://minnie.tuhs.org/Programs/Ctcompare/

[15] Sherlock (Source comparison software), http://www.cs.usyd.edu.au/~scilect/sherlock/

[16] Moss (Source comparison software), http://www.cs.berkeley.edu/~aiken/moss.html

[17] Schleimer, S., Wilkerson, D. S., Aiken, A. “Winnowing: local algorithms for document
fingerprinting”, Proc. 2003 ACM SIGMOD Int'l Conf. on Management of Data, San Diego, CA,
June 2003, pp.76-85.

[18] AppFuse Framework, https://appfuse.dev.java.net/

[19] Apache Jakarta Tomcat (Servlet container), http://jakarta.apache.org/tomcat/

[20] MySQL, http://www.mysql.com/

[21] VMWare (Virtual computer emulator), http://www.vmware.com/

